Analytik NEWS
Das Online-Labormagazin
27.04.2024

13.11.2023

Stoffwechsel von Bakterien unter der Lupe: Interaktionen von Wirt und Mikrobe entüllt

Teilen:


Die faszinierende Welt der Bakterien, die als Symbionten oder Parasiten in tierischen Wirten leben, bleibt für Forschende oft ein Rätsel. Die Christian-Albrechts-Universität zu Kiel (CAU) und das Max-Planck-Institut für Marine Mikrobiologie in Bremen tragen mit ihrer Forschung im Bereich der Interaktionen zwischen Mikroben und ihrem Wirt ein Stück zur Lösung des Rätsels bei.

Unter der Leitung von Prof. Dr. Manuel Liebeke, Leiter der Abteilung Metabolomics an der Agrar- und Ernährungswissenschaftlichen Fakultät der CAU und der Forschungsgruppe Metabolische Interaktionen am Max-Planck-Institut für Marine Mikrobiologie, hat ein Forschungsteam einen Durchbruch erzielt, der Einblicke in diese geheimnisvolle Mikrowelt ermöglicht.

Oft können Bakterien nicht im Labor kultiviert werden und Forschende müssen auf Informationen des Bakterien-Erbguts aus Umweltproben zurückgreifen, um damit theoretische Erkenntnisse über den Stoffwechsel der Mikroorganismen zu erhalten. Jedoch fehlte es bisher an Einblicken darüber, was sie tatsächlich in ihrer natürlichen Umgebung tun. Um dieses Rätsel zu lösen, begannen Wissenschaftler damit, das sogenannte Metabolom der Bakterien zu erforschen - alles, was mit ihrem Stoffwechsel zu tun hat, einschließlich Metaboliten wie Zucker oder Fette.

In einer wegweisenden Studie entwickelte das Team um Liebeke eine Methode, mit der sie einzelne Bakterien identifizieren und gleichzeitig feststellen können, welche Metaboliten in den Zellen vorhanden sind - alles ohne die Bakterien im Labor zu kultivieren. Diese Methode ermöglicht es ihnen, zu untersuchen, wie Bakterien als symbiotische Untermieter, beispielsweise in Muscheln, leben und überleben. Das Team analysierte Hunderte von Stoffwechselprodukten auf einer Fläche kleiner als ein Quadratmillimeter. Die Ergebnisse veröffentlichten die Kieler und Bremer Forschenden im September in der Fachzeitschrift Nature Protocols.

Eingefrorener Moment ermöglicht detaillierte Betrachtung

"Wir erstellen sozusagen einen Schnappschuss der Bakterien bei der Arbeit, genau so, wie sie in ihrer natürlichen Umgebung, insbesondere innerhalb einer tierischen Zelle, aktiv sind", erklärt Liebeke. "Und das können wir in beeindruckender Auflösung von wenigen Mikrometern tun, etwa zehnmal dünner als ein menschliches Haar."

Eine Besonderheit bei dieser Methode ist die Verwendung von schockgefrorenem Gewebe, das hauchdünn geschnitten wird. Anschließend erstellen die Forschenden mit einer speziellen Massenspektrometrie-Technik namens MALDI-MS-Imaging eine Momentaufnahme der chemischen Verbindungen in den Zellen.

Die richtigen Schlussfolgerungen aus den Bildern der Metaboliten sind jedoch nur möglich, wenn bekannt ist, welche Bakterien sie erzeugen oder nutzen. Um dieses Problem zu lösen, nutzen die Forschenden zusätzlich die Fluoreszenz-in situ-Hybridisierung (FISH), um einzelne Bakterienzellen in der Probe zu identifizierten und lokalisieren.

"Die Anwendung dieser Methode auf Wirt-Mikroben-Gemeinschaften wird uns viele spannende neue Einblicke in die chemische Kommunikation zwischen Organismen geben", sagt Patric Bourceau vom Max-Planck-Institut für Marine Mikrobiologie, Erstautor des entwickelten Protokolls zur Anwendung der Methode.

Diese wegweisende Arbeit öffnet neue Türen für die Erforschung von Bakterien und ihre Interaktionen mit ihrem Wirt. Zusätzlich bietet die hier präsentierte Methode vielversprechende Anwendungsmöglichkeiten für die Zukunft: Entwickelt am Bremer Max-Planck-Institut, wendet Liebekes neue Arbeitsgruppe an der CAU sie mittlerweile an, um das menschliche Darmmikrobiom und dessen Einfluss auf den Stoffwechsel zu untersuchen. Dies kann zum Beispiel helfen, entzündliche Darmerkrankungen besser zu verstehen. Mit der Publikation eines detaillierten Protokolls steht die Anwendung der Technik nun anderen Forschenden weltweit offen.

Zusammenfassend ermöglicht die Anwendung von Mikroskopie und Metabolomics (so der Name der Forschungsrichtung, die sich der Untersuchung von Metaboliten widmet) Einblicke in die funktionelle und chemische Ökologie von Wirt-Mikroben-Interaktionen. Die stetigen Fortschritte in der MALDI-MSI-Technologie ermöglichen es, mikrobielle Kolonien, Biofilme und einzelne eukaryotische Zellen und sogar bakterielle Mikrokolonien bildlich darzustellen. Heute steht die MALDI-MSI-Technologie kurz davor, einzelne bakterielle Zellen darstellen zu können. Das hier präsentierte Protokoll bildet die Grundlage für die Analyse und das Verständnis metabolischer Interaktionen, auf den Mikrometer genau.

» Originalpublikation

Quelle: Universität Kiel