Analytik NEWS
Das Online-Labormagazin
20.05.2024

31.01.2018

Atome mit lichtmikroskopischer Technik abbilden

Teilen:


Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers groß sind, lassen sich jedoch mit konventionellen optischen Mikroskopen nicht abbilden. Dies hängt mit der Wellennatur des Lichts und den damit verbundenen physikalischen Gesetzen zusammen, die der deutsche Physiker Ernst Abbe bereits 1873 formuliert hat.

Danach entspricht die maximale Auflösung eines Mikroskops der halben Wellenlänge des verwendeten Lichts. Verwendet man beispielsweise grünes Licht mit einer Wellenlänge von 500 Nanometer, kann ein optisches Mikroskop im besten Fall Objekte in einem Abstand von 250 Nanometer abbilden.

An- und ausgeschaltet

In den letzten Jahren ist es Wissenschaftlern jedoch gelungen, diese Auflösungsgrenze zu umgehen und Bilder von Strukturen zu erzeugen, die nur wenige Nanometer groß sind. Sie verwenden dazu Laser verschiedener Wellenlänge, mit denen die Fluoreszenz von Molekülen in einem Teil des Präparats angeregt wird, während sie in den umliegenden Bereichen unterdrückt wird. Damit lassen sich Strukturen wie Farbstoffmoleküle abbilden, die nur wenige Nanometer groß sind. Die Entwicklung dieser Methode (Stimulated Emission Depletion, STED), wurde 2014 mit dem Chemie-Nobelpreis ausgezeichnet.

Für alle mit zwei Energieniveaus

Timo Kaldewey aus dem Team von Professor Richard Warburton am Departement Physik und Swiss Nanoscience Institute der Universität Basel hat nun in Zusammenarbeit mit Kollegen der Ruhr-Universität Bochum (Deutschland) eine ähnliche Technik entwickelt, welche die Abbildung von nanometergroßen Objekten möglich macht, insbesondere auch eines quantenmechanischen Zweizustandssystems.

Die Physiker untersuchten sogenannte Quantenpunkte, künstliche Atome in einem Halbleiter, die sich mithilfe der neuen Methode als helle Punkte darstellen liessen. Die Wissenschaftler regten dabei die Atome mit einem pulsierenden Laser an, der seine Farbe während jedes Pulses wechselt. Die Fluoreszenz des Atoms wird dadurch an- und ausgeschaltet.

Während die STED-Methode nur bei Molekülen funktioniert, die durch die Anregung des Lasers mindestens vier verschiedene Energieniveaus einnehmen können, funktioniert die neue Methode aus Basel auch mit Atomen, die nur zwei Energiezustände haben. Solche Zweizustandssysteme bilden wichtige Modellsysteme für die Quantenmechanik.

Anders als bei der STED-Mikroskopie setzt die neue Methode auch keine Wärme frei. "Das ist ein großer Vorteil, da freigesetzte Wärme die untersuchten Moleküle zerstören kann", erklärt Richard Warburton. "Unser Nanoskop eignet sich für alle Objekte, die zwei Energieniveaus besitzen so wie echte Atome, kalte Moleküle, Quantenpunkte oder Farbzentren."

» Originalpublikation

Quelle: Universität Basel