Analytik NEWS
Das Online-Labormagazin
20.05.2024

09.08.2016

Wasser induziert elektrische Felder an der DNA-Oberfläche

Teilen:


Struktur und Dynamik der DNA-Doppelhelix werden entscheidend durch die umgebende Wasserhülle beeinflusst. Neue Ultrakurzzeit-Experimente zeigen, dass die beiden ersten Wasserschichten extrem starke elektrische Felder von bis zu 100 Megavolt/cm erzeugen, die auf der Femtosekunden-Zeitskala fluktuieren und auf eine Reichweite von etwa 1 nm begrenzt sind.

Als Träger der Erbinformation weisen DNA-Moleküle in ihrer natürlichen wässrigen Umgebung eine Doppelhelixstruktur auf, die aus zwei gegenläufigen gewundenen Strängen von Nukleotiden aufgebaut ist. Eine alternierende Anordnung negativ geladener Phosphatgruppen und polarer Zuckereinheiten bildet das Rückgrat der Doppelhelix welches direkt mit den umgebenden Wassermolekülen wechselwirkt. Die insgesamt negative Ladung der Doppelhelix wird durch positiv geladene Gegenionen, z.B. Natriumionen kompensiert, die sich in wässriger Umgebung dicht an der Helixoberfläche befinden.

Die Wechselwirkung von elektrischen Dipolmomenten der Wassermoleküle mit den Ladungen der Gegenionen und Phosphatgruppen sowie mit den polaren Einheiten erzeugt elektrische Felder an der DNA-Oberfläche, deren Eigenschaften trotz intensiver Forschung bis heute kontrovers diskutiert werden. Dies liegt wesentlich an der strukturellen Komplexität dieses Vielteilchensystems und seinen thermischen Fluktuationen auf kurzen Zeitskalen.

Wissenschaftlern des Max-Born-Instituts in Berlin ist es jetzt erstmals gelungen, Stärke, Reichweite und ultraschnelle Dynamik der an einer nativen DNA-Oberfläche auftretenden elektrischen Felder quantitativ zu bestimmen. Wie sie berichten, dienen Schwingungen im Rückgrat der Doppelhelixstruktur von natürlicher Salmon DNA als Sonden um die elektrischen Wechselwirkungen räumlich und zeitlich abzubilden. Die elektrischen Felder an der DNA-Oberfläche beeinflussen hierbei direkt die Form und Dynamik der Schwingungsresonanzen, welche mit einem speziellen Verfahren, der sog. zweidimensionalen Infrarotspektroskopie, in Echtzeit auf einer Zeitskala im Femtosekundenbereich (fs) aufgezeichnet werden. Um unterschiedliche Beiträge zu den fluktuierenden elektrischen Feldern an der DNA-Oberfläche zu unterscheiden, wurde der Wassergehalt der DNA-Proben systematisch variiert.

Die Experimente und umfangreiche theoretische Analysen zeigen, dass Wassermoleküle in den ersten beiden Schichten, die die DNA umgeben, ein extrem starkes elektrisches Feld erzeugen, während ionische Gruppen und weiter aussen liegende Wassermoleküle nur eine untergeordnete Rolle spielen. Die räumliche Reichweite des Feldes beträgt nur etwa 1 nm, bei einer Stärke von bis zu 100 MV/cm. Thermische Bewegungen der Wassermoleküle führen zu Feldfluktuationen von 25 MV/cm auf einer Zeitskala von 300 fs. Die Zeitskala der Fluktuationen zeigt, dass die Bewegung der Wassermoleküle durch die Kopplung an die strukturierte DNA-Oberfläche behindert und im Vergleich zu reinem Wasser verlangsamt wird. Diese neuen, erstmals quantitativen Befunde sind wichtig für das Verständnis der maßgeblichen Rolle von Wasser und seiner Dynamik an biologischen Grenzflächen, etwa geladenen Zellmembranen und Oberflächen von Proteinen.

» Originalpublikation

Quelle: Max-Born-Institut