Analytik NEWS
Das Online-Labormagazin
20.05.2024

30.12.2013

Reibung im Nanometerbereich: Hohe Energieverluste in der Nähe von Ladungsdichtewellen

Teilen:


Ein internationales Forscherteam unter Beteiligung der Universität Basel konnte in der Nähe von Ladungsdichtewellen einen starken Energieverlust beobachten, der durch Reibungseffekte verursacht wird. Dies könnte praktische Bedeutung für die Kontrolle von Reibung im Nanometerbereich haben. Die Ergebnisse wurden in der Fachzeitschrift "Nature Materials" veröffentlicht.

Reibung wird oft als nachteiliges Phänomen betrachtet, das zu Verschleiß führt und Energieverluste verursacht. Umgekehrt kann aber auch zu wenig Reibung unvorteilhaft sein, zum Beispiel beim Laufen auf Eisflächen oder beim Fahren auf nasser Straße.

Das Verständnis von Reibungseffekten ist deshalb von großer Bedeutung - auch in der Nanotechnologie, wo Reibung im Nanometerbereich kontrolliert werden soll. Einen Beitrag, wie Reibung in mikroskopischen Dimensionen funktioniert, leistet nun eine neue Studie von Forschern der Universität Basel, der Universität Warwick, des CNR-Instituts SPIN in Genua sowie des Internationalen Zentrums für Theoretische Physik (ICTP) in Triest.

Für ihr Experiment ließen die Wissenschaftler um den Basler Experimentalphysiker Prof. Ernst Meyer die nanometerfeine Spitze eines Rasterkraftmikroskops über die Oberfläche einer Schichtstruktur aus Niob- und Selen-Atomen vibrieren. Diese Verbindung verwendeten sie aufgrund ihrer besonderen elektronischen Eigenschaften; insbesondere bilden sich darin bei extrem tiefen Temperaturen sogenannte Ladungsdichtewellen. Dadurch sind die Elektronen nicht mehr wie in einem Metall gleichmäßig verteilt, sondern es bildet sich Gebiete, in denen die Elektronendichte zwischen hoch und tief schwankt.

Energieverluste in der Nähe von Ladungsdichtewellen

In der Nähe solcher Ladungsdichtewellen registrierten die Forscher sehr hohe Energieverluste zwischen der Oberfläche und der Spitze des Rasterkraftmikroskops, selbst bei relativ großen Abständen von mehreren Atomdurchmessern. "Der Energieabfall war so stark, als wäre die Spitze plötzlich in eine zähe Flüssigkeit geraten", beschreibt Meyer den Reibungseffekt.

Diese Energieverluste konnten die Forscher nur bei Temperaturen unterhalb 70 Kelvin (-203°C) beobachten. Da Ladungsdichtwellen bei höheren Temperaturen nicht existieren, werteten sie dies als Indiz dafür, dass Reibungskräfte zwischen Messnadel-Spitze und Ladungsdichtewellen die Energieverluste verursachen.

Das theoretische Modell zeigt, dass die hohen Energieverluste durch eine Serie von lokalen Phasenverschiebungen der Ladungsdichtewellen verursacht werden. Dieses neu entdeckte Phänomen könnte praktische Bedeutung für die Nanotechnologie haben, zumal sich der Reibungseffekt in Abhängigkeit von Abstand und Spannung modulieren lässt.

» Originalpublikation

Quelle: Universität Basel