Analytik NEWS
Das Online-Labormagazin
26.04.2024
Glossar durchsuchen

Linksammlung durchsuchen

Messungen transienter Elektronendichteverteilungen durch Femtosekunden-Röntgenbeugung

Freyer, Benjamin - Humboldt-Universität Berlin (2013)


Diese Arbeit behandelt Experimente zur Messung transienter Elektronendichte-Verteilungen mit der Femtosekunden-Röntgenbeugung. Es werden verschiedene Methoden der Röntgenbeugung beleuchtet und deren Charakteristika, speziell im Hinblick auf die Verwendung von ultrakurzen Röntgenimpulsen, erläutert. Die Rotationsmethode wird in der stationären Röntgenbeugung sehr häufig angewendet. In dieser Arbeit wird ein Demonstrationsexperiment vorgestellt, welches die Verwendung ultrakurzer Röntgenimpulse mit dieser Methode kombiniert. Zum ersten mal wurden transiente Reflektivitäten von mehreren Röntgenreflexen mit der Rotationsmethode auf der Femtosekunden-Zeitskala bestimmt. Das Experiment verwendet Bismut-Kristalle als Prototyp-Material. Bismut wurde mit der Femtosekunden-Röntgenbeugung häufig untersucht, indem einzelne Röntgen-Reflexe nacheinander gemessen wurden. Die Messergebnisse dieser Arbeit werden mit den Literaturdaten verglichen.

Im zweiten Teil der Arbeit wird ein Pulverbeugungs-Experiment vorgestellt, mit dem die Änderung der Elektronendichteverteilung auf ultrakurzen Zeitskalen bestimmt wird. Untersucht wird ein Übergangsmetall-Komplex nach Photoanregung des Metall-Zu-Liganden-Ladungstransfer-Übergangs. Neben den erwarteten Beobachtungen, der Änderung der Bindungslänge und die Verschiebung von Elektronenladung zwischen Metall und Ligand, zeigen die Anionen eine starke Beteiligung am Ladungstransfer. DesWeiteren konnte die Änderung der Elektronendichte nach Photoanregung als überwiegend kooperativ klassifiziert werden. Demnach ruft die direkte Anregung eines Metall-Komplexes die Verschiebung von Elektronenladung einer Vielzahl benachbarter Einheiten hervor. Die Messergebnisse zeigen, dass mehr als 30 Übergangsmetall-Komplexe und 60 Anionen an dem kollektiven Ladungstransfer beteiligt sind. Dieser gemeinsame Elektronentransfer ist auf die starke Coulomb-Wechselwirkungen zwischen den dicht gepackten Ionen-Einheiten zurückzuführen.


» Volltext