

GC-MS-Analyse von Phthalaten:

Vergleich der Performance stationärer Phasen für die Gaschromatografie

Dan Li, Rebecca Stevens, Chris English

Restek GmbH

Zusammenfassung

Phthalate sind in der Umwelt weit verbreitet und haben aufgrund ihrer potenziell schädlichen Auswirkungen für die menschliche Gesundheit Beachtung gefunden. Der Nachweis und die Trennung von Phthalaten ist deshalb zu einer Notwendigkeit geworden. Die Gaschromatografie ist eine effektive Methode zur Trennung von Phthalaten, die mit verschiedenen Detektionsverfahren wie Elektroneneinfang (ECD), Flammenionisation (FID) und Massenspektrometrie (MS) gekoppelt werden kann.

In der vorliegenden Studie wurde die Methodenoptimierungssoftware Pro EZGC eingesetzt, um die optimalen stationären Phasen und Bedingungen für die GC-MS-Analyse von Phthalaten zu bestimmen. Die Trennung der Phthalate wurde auf sieben verschiedenen stationären Phasen verglichen: Rtx-440, Rxi-XLB, Rxi-5ms, Rtx-50, Rxi-35Sil MS, Rtx-CLPesticides und Rtx-CLPesticides2. In allen Fällen wurden 18 EPA- und EUgelistete Phthalate in weniger als 6 Minuten analysiert.

Zusätzlich wurde eine erweiterte Liste von 37 Phthalaten unter Verwendung einer optimierten Methode in weniger als 40 Minuten analysiert. Sowohl Rtx-440, eine nur von Restek erhältliche Phase, als auch Rxi-XLB Säulen zeigten die beste Auflösung des komplexen Phthalat-Gemisches.

Einführung

Phthalate werden in großem Umfang als Weichmacher in unterschiedlichen Industrieprodukten verwendet. Einige Phthalate gelten jedoch als endokrine Disruptoren [1] und werden mit einer Tab. 1: Vorhergesagte Elutionszeiten für regulierte Phthalate auf verschiedenen GC-Säulen von Restek

Säule: 30m x 0.25mm x 0.25µm (0.20µm für die Rtx-CLPesticides2-Säule) Konstante Lineargeschwindigkeit: 66.7cm/sec

Ofen: 200°C (0.5 min), auf 330°C (320°C für Rtx-50) mit 30°C/min (1 min)

Peak- Nr.	Bezeichnung	Gelistet in	Rtx-440 (ArtNr. 12923)	Rxi-XLB (ArtNr. 13723)	Rtx- CLPesticides (ArtNr. 11123)	Rxi-35Sil MS (ArtNr. 13823)	Rtx-50 (ArtNr. 10523)	Rxi-5ms (ArtNr. 13423)	Rtx- CLPesticides2 (ArtNr. 11323)	CAS-Nr.	Reinheit
1	Dimethylphthalat*	EPA 8061A, EPA Priority	1.28	1.16	1.14	1.29	1.46	1.10	1.23	131-11-3	Rein
2	Diethylphthalat*	EPA 8061A, EPA Priority, EU	1.54	1.39	1.33	1.55	173	1.30	1.47	84-66-2	Rein
3	Benzylbenzoat	Interner Standard	2.11	1.87	1.56	2.17	2.31	1.70	1.88	120-51-4	Rein
4	Diisobutylphthalat*	EPA 8061A	2.25	2.04	1.88	2.21	2.34	1.91	2.10	84-69-5	Rein
5	Di-n-butylphthalat*	EPA 8061A, EPA Priority	2.58	2.33	2.10	2.53	2.69	2.17	2.38	84-74-2	Rein
6	Bis(2-methoxyethyl)phthalat*	EPA 8061A	2.74	2.48	2.26	2.86	3.10	2.27	2.63	117-82-8	Rein
7	Bis(4-methyl-2-pentyl) phthalat-Isomer 1*	EPA 8061A	2.85	2.62	2.37	2.71	2.83	2.50	2.64	84-63-9	Rein
8	Bis(4-methyl-2-pentyl) phthalat-Isomer 2*	EPA 8061A	2.86	2.63	2.37	2.72	2.84	2.51	2.65	84-63-9	Rein
9	Bis(2-methoxyethyl)phthalat*	EPA 8061A	3.08	2.80	2.51	3.13	3.33	2.59	2.90	605-54-9	Rein
10	Di-n-pentylphthalat*	EPA 8061A	3.16	2.91	2.58	3.08	3.21	2.71	2.89	131-18-0	Rein
11	Di-n-hexylphthalat*	EPA 8061A	3.73	3.46	3.07	3.61	3.69	3.25	3.42	84-75-3	Rein
12	Butylbenzylphthalat*	EPA 8061A, EPA Priority, EU	3.85	3.56	3.12	3.93	4.13	3.30	3.63	85-68-7	Rein
13	Hexyl-2-ethylhexylphthalat	EPA 8061A	3.98	3.72	3.29	3.83	3.92	3.52	3.66	75673-16-4	Technische Qualität
14	Bis(2-butoxyethyl)phthalat*	EPA 8061A	4.12	3.82	3.39	4.08	4.21	3.60	3.85	117-83-9	Rein
15	Bis(2-ethylhexyl)phthalat*	EPA 8061A	4.21	3.95	3.52	4.05	4.12	3.82	3.91	117-81-7	Rein
16	Dicyclohexylphthalat*	EPA 8061A, EPA Priority, EU	4.33	4.04	3.55	4.42	4.58	3.78	4.08	84-61-7	Rein
17	Di-n-octylphthalat*	EPA 8061A, EPA Priority, EU	4.76	4.50	3.97	4.59	4.62	4.24	4.39	117-84-0	Rein
18	Diisononylphthalat	EU	5.10	4.84	4.23	4.84	4.84	4.50	4.64	68515-48-0	Isomerengemisch
19	Diisodecylphthalat	EU	5.20	4.95**	4.42	5.01	5.18	4.71	4.90	26761-40-0	Isomerengemisch
20	Dinonylphthalat*	EPA 8061A	5.24	4.95**	4.39	5.04	5.10	4.72	4.83	84-76-4	Rein

Hinweis: Die Schattierung zeigt koeluierende Peaks an (Rs<1.5). Für die einzelnen Säulen zeigen unterschiedliche Schattierungsfarben unterschiedliche Koelutionspaare an.

*Diese Verbindungen sind im Phthalatester-Gemisch von Restek für die EPA- Methode 8061A enthalten.

**Peaks 19 und 20 sind nicht isobar und können durch Selected Ion Monitoring (SIM) getrennt werden.

Reihe von Problemen in Verbindung gebracht, darunter angeborene Fehlbildungen [2], Bluthochdruck bei Kindern [3], durch Bluthochdruck hervorgerufene Herzerkrankungen während der Schwangerschaft [4], Atemwegsstörungen [5] und Fettleibigkeit [6].

Die Europäische Union (EU) und die Umweltschutzbehörde der Vereinigten Staaten (U.S. EPA) haben die Verwendung der schädlichsten Phthalate eingeschränkt (Tabelle 1). GC-MS ist eine häufig verwendete Methode zur Analyse von Phthalaten, da sie einfach, schnell und kostengünstig ist. Die GC-MS-Methode liefert außerdem massenspektrometrische Informationen und bietet damit eine leistungsstarke Geräteplattform zur Identifikation der Phthalate. Die Verwendung einer GC-Säule mit guter Trennleistung ist wichtig, weil die massenspektrometrische Identifikation und die quantitative Bestimmung aufgrund der strukturellen Ähnlichkeiten der Phthalate schwierig sein kann. So ist vielen Phthalaten ein Basispeak-Ion (m/z 149) gemeinsam, was die Identifikation und Quantifizierung von koeluierenden Phthalaten erschwert. Gemische technischer Qualität und Isomere machen das Problem noch komplizierter.

Eine kürzlich veröffentlichte Abhandlung gibt einen Überblick über die am häufigsten verwendeten GC- und LC-Säulen für die Phthalat-Analyse [7]. Gemäß der vorliegenden Literatur bietet die GC-MS eine bessere Auflösung für die Phthalat-Analytik als die LC-MS. Die am häufigsten verwendeten GC-Säulen in absteigender Reihenfolge ihrer Beliebtheit sind 5er, XLB-, 35er, 17er, 50er und 1er Phasen. Die auf einer stationären Phase erzielte Trennung lässt sich durch Anpassung der Gerätebedingungen verbessern, aber das kann im Labor ein zeitaufwändiges Verfahren sein. Mithilfe der Methodenoptimierungssoftware Pro EZGC lassen sich die GC-Parameter (z. B. Trägergastyp, Flussrate, Temperaturprogramm, Säulenabmessungen und Vorsäule) schnell optimieren, um die kürzest mögliche Analysezeit für eine gegebene stationäre Phase zu realisieren.

In dieser Untersuchung wurden für 37 Phthalate (siehe Tabelle 2 im Anhang) Bibliotheken für die folgenden sieben stationären Phasen für das Pro EZGC-Programm erstellt: Rtx-440, Rxi-XLB, Rxi-5ms, Rtx-50, Rxi-35Sil MS, Rtx-CLPesticides und Rtx-CLPesticides2. Diese stationären Phasen wurden zur Analyse von sowohl regulierten als auch unregulierten Phthalaten ausgewertet.

Verwendete Chemikalien

Das Phthalatester-Gemisch für EPA-Methode 8061A von Restek, das 15 der gewünschten Analyten in einer Konzentration von jeweils 1000 µg/mL enthält, wurde als primärer Referenzstandard verwendet. Als interner Standard wurde Benzylbenzoat verwendet. Alle anderen Phthalat-Standards wurden von Chem Service bezogen.

Gerät

Die GC-MS-Analytik wurde auf einem Shimadzu QP2010 Plus GC-MS durchgeführt. Das Gerät war mit einer der sieben Restek-Säulen (jeweils 30m x 0.25mm x 0.25µm bzw. 0.20µm für die Säule Rtx-CLPesticides2) bestückt. Die Windows-basierte Software Pro EZGC wurde verwendet, um die optimalen Bedingungen für jede Säule festzulegen. Anschließend wurden alle Säulen direkt miteinander verglichen, indem die Proben einheitlich unter genau den Bedingungen analysiert wurden, die die insgesamt beste Trennleistung ergeben hatten. Dieser direkte Vergleich liefert ein besseres Verständnis der Selektivitätsunterschiede zwischen den einzelnen Säulen. Detaillierte Säulenbeschreibungen und die experimentellen GC-MS-Parameter sind in den Tabellen 1 und 3 angegeben.

Probenvorbereitung

Die Standards wurden in Methylenchlorid gelöst und verdünnt. Standardlösungen wurden hergestellt mit 50µg/mL (bzw. 80µg/mL für den internen Standard Benzylbenzoat). Während der Probenvorbereitung wurde die Verwendung von Plastikteilen sorgsam vermieden; alle Vorbereitungsarbeiten wurden mithilfe von Glasgeräten (Messkolben, Spritzen, Fläschchen usw.) durchgeführt.

Ergebnisse und Diskussion

Für Phthalate, die von der EPA und der EU reguliert werden, wurde ein direkter Vergleich der Säulentrennleistung durchgeführt. Retentionszeiten für Phthalate auf sieben verschiedenen Phasen wurden vom Pro EZGC-Programm unter identischen GC-Bedingungen vorhergesagt. Die in Tabelle 1 gezeigten Bedingungen lieferten die insgesamt besten chromatografischen Ergebnisse von allen Setups, die für die einzelnen Säulen optimiert worden waren. Als koeluierend wurden Substanzpaare mit einer Auflösung von weniger als 1.5 definiert. Die Gesamtanalysezeit betrug weniger als 6 Minuten. Zur Bestätigung der durch die Pro EZGC-Software vorhergesagten Retentionszeiten wurden Chromatogramme für jede stationäre Phase unter den gleichen Bedingungen wie bei der Software aufgenommen (siehe Abbildungen 1 im Anhang).

Da die Säulenlängen im Gegensatz zur Simulation nicht exakt 30m betrugen, zeigten die absoluten Retentionszeiten geringfügige Abweichungen von den vorhergesagten Werten; die Elutionsreihenfolge und die koeluierenden Substanzpaare stimmten jedoch exakt mit den Vorhersagen überein. Die Säulen Rtx-440, Rxi-XLB, Rtx-CLPesticides und Rxi-35Sil MS erreichten Basislinientrennungen für alle EPA- und EU-gelisteten Phthalate.

Die beiden Isomere des Bis[4-methyl-2pentyl] phthalats ließen sich auf keiner der sieben Phasen trennen. Die Elutionsreihenfolge auf den Säulen Rtx-440, Rxi-XLB, Rtx-CLPesti-cides und Rxi-5ms war vergleichbar.

Auf den Phasen Rxi-35Sil MS und Rtx-50 wurden Unterschiede in der Elutionsreihenfolge beobachtet. Insbesondere änderte sich die Elutionsreihenfolge von vier Paaren von Phthalaten auf der Phase Rxi-35Sil MS, darunter die Isomere Bis(2-methoxyethyl)phthalat / Bis(4-methyl-2-pentyl)phthalat (Peaks 6 und 7/8), Bis(2-ethoxyethyl)phthalat / Di-n-pentylphthalat (Peaks 9 und 10), Butylbenzyl-phthalat / Hexyl-2-ethylhexylphthalat (Peaks 12 und 13) und Bis(2-butoxyethyl)phthalat / Bis(2ethylhexyl)phthalat (Peaks 14 und 15).

Die Säulen mit den Phasen Rtx-440 und Rxi-XLB zeigten die insgesamt beste Trennleistung unter diesen Bedingungen. Peaks, die auf anderen Phasen koeluierten, wurden auf Rtx-440- und Rxi-XLB-Säulen gut aufgelöst. Zu den Paaren, die auf anderen Phasen nicht aufgelöst wurden, gehören Bis(2-ethylhexyl)phthalat und Dicyclohexylphthalat (Peaks 15 und 16) auf der Rxi-5ms-Säule, Bis(2-ethylhexyl)phthalat und Butylbenzylphthalat (Peaks 15 und 12) auf der Rtx-50-Säule und Bis(2methoxyethyl) und Bis[4-methyl-2-pentyl]phthalat (Peaks 6 und 7,8) sowie Bis(2-ethoxyethyl)phthalat und Di-npentylphthalat (Peaks 9 und 10) auf der Rtx-CLPesticides2-Säule.

In Isomerengemischen technischer Qualität können Isomerengruppen wie Diisononylphthalat und Di-isodecylphthalat (Peaks 18 und 19) identifiziert werden, aber es ist nicht möglich, jedes einzelne Isomer innerhalb einer Gruppe vollständig aufzulösen. Zum Glück gibt es eindeutige Ionen zur Identifikation und zur quantitativen Bestimmung, z. B. m/z 293 für Diisononylphthalat und m/z 307 für Diisododecylphthalat (Abbildung 1).

Ein umfassenderer Vergleich der sieben stationären Phasen wurde für die Trennung von 37 Phthalaten (insgesamt 40 Peaks, einschließlich dreier Isomere) anhand der von der Pro EZGC-Software vorhergesagten Retentionszeiten durchgeführt (Tabelle 2). Die in Tabelle 3 angegebenen GC-Parameter ermöglichten die Trennung von 34 der 40 Peaks auf sowohl den Rtx-440- als auch den Rxi-XLB-Säulen in weniger als 40 Minuten und die beiden Phasen führten zu unterschiedlichen Koelutionen. Das Chromatogramm der Rtx-440-Säule wurde erfasst und ist in Abbildung 2 dargestellt. Für einige Paare, die nicht basisliniengetrennt werden konnten, war die Auflösung dennoch ausreichend für eine qualitative Analyse. Es gibt keinen einzigen Satz von Bedingungen, der für alle Phasen optimal ist. Das Programm mit den insgesamt besten Ergebnissen in puncto Geschwindigkeit und Zahl der aufgelösten Peaks wurde für den direkten Säulenvergleich ausgewählt. Analytiker können die Bedingungen für ihre spezifischen Substanzlisten unter Verwendung des Pro EZGC-Programms optimieren.

Aufgrund der Analysegeschwindigkeit insgesamt und der hohen Trennschärfe für die Zielanalyten empfehlen wir die Verwendung der Phasen Rtx-440 und Rxi-XLB zur GC-MS-Analyse von Phthalaten. Obwohl GC-MS im Allgemeinen die bevorzugte Methode ist, da sie eindeutigere Informationen liefert, lassen sich

Tab. 3: GC-MS Parameter

Parameter	Werte für EPA & EU-Listen	Werte für erweiterte Liste
Injektortemperatur (*C)	280	280
Injektionsvolumen (µL)	1.0	1.0
Liner	Restek Premium 3.5mm Precision Liner mit Glaswolle (ArtNr. 23320.1)	Restek Premium 3.5mm Precision Liner mit Glaswolle (ArtNr. 23320.1)
Ofen Temperaturprogramm	200 °C (0.5 min), auf 330 °C* mit 30 °C/min (1 min)	150 °C (0.8 min), auf 200 °C mit 5 °C/min, auf 275 °C mit 3 °C/min (2 min)
Trägergas: He	Konstante Lineargeschwindigkeit: 66.7 cm/sec bei 200 °C (3 mL/min**)	Konstante Lineargeschwindigkeit: 48 cm/sec bei 150 °C (1.6 mL/min)
Split-Verhältnis	20:1	20:1
Detektor	MS	MS
Modus:	Vollscan (59–400)	Vollscan (59-400)
Temp. Transferline:	300 °C	300 °C
Scanereigniszeit	0.1 sec	0.1 sec
Analysatortyp:	Quadrupol	Quadrupol
Ionenquellentemperatur:	280 °C	280 °C
Lösemittelausblendung:	0.9 min	2.5 min
Tuning-Typ:	PFTBA	PFTBA
Ionisierungsmodus:	El	E
*320 °C für Rtx-50		

**3 mL/min ist für manche Geräte möglicherweise zu hoch. Konsultieren Sie das Betriebshandbuch Ihres Geräts vor der Programmierung

Abb. 2: Die Substanzen aus der erweiterten Phthalat-Liste (50µg/mL) wurden im Scanmodus auf einer Rtx-440-Säule getrennt (Bedingungen sind in Tabelle 3 angegeben

Phthalate auch mithilfe von GC-ECD erfolgreich analysieren. EPA 8061A ist eine Methode, die zur Identifikation und zur quantitativen Bestimmung von Phthalaten in wässrigen und festen Matrices mithilfe einer parallelen Säulenkonfiguration und zwei Elektroneneinfangdetektoren (ECDs) verwendet wird [8]. Rtx-440 und Rxi-35Sil MS-Säulen sind ideal für eine Konfiguration mit zwei parallelen Säulen. Mit-hilfe der Pro EZGC-Software ließen sich geeignete Analysebedingungen für die Rtx-440-Säule schnell bestimmen, und die Rxi-35Sil MS-Säule diente dann aufgrund der beobachteten Änderungen in der Elutionsreihenfolge als ausgezeichnete Bestätigungssäule. Die GC-ECD-Bedingungen lassen sich unter Verwendung des kostenlosen online EZGC-Method Translators von Restek leicht aus den in Tabelle 3 gezeigten GC-MS-Methoden ableiten. [9].

Schlussfolgerung

Die sieben am häufigsten verwendeten GC-Säulen für die Analyse von Phthalaten wurden mithilfe der ProEZCG-Software, eines Tools zur flexiblen und einfachen GC-Optimierung, direkt verglichen. Die überlegene Selektivität und Trennleistung der Säulen Rtx-440 und Rxi-XLB ergab schnelle Analysezeiten für sowohl die regulierten als auch die Phthalate der erweiterten Liste. Mit guter Auflösung, hohen maximalen Betriebstemperaturen (340 °C für Rtx-440 und 360 °C für Rxi-XLB [Tabelle 4]) sowie minimalem Säulenbluten sind die Säulen Rtx-440 und Rxi-XLB die bevorzugte Wahl für die Analyse von Phthalaten mithilfe der GC-MS. Bei Verwendung eines GC-ECD Systems anstelle der GC-MS wird eine Konfiguration mit den beiden Säulen Rtx-440 und Rxi-35Sil MS empfohlen.

Danksagungen

Die Autoren bedanken sich bei der Shimadzu Corporation für ihre Unterstützung.

Tab. 4: Maximaltemperaturen

	Rtx-440 (ArtNr. 12923)	Rxi-XLB (ArtNr. 13723)	Rxi-5ms (ArtNr. 13423)	Rtx-50 (ArtNr. 10523)	Rxi-355il MS (ArtNr. 13823)	Rtx-CLPesticides (KatNr. 11123)	Rtx-CLPesticides2 (KatNr. 11323)
Maximaltemperatur (°C)	340	360	350	320	360	340	340

Literatur

[1] H. Choi, J. Kim, Y. Im, S. Lee, Y. Kim, The association between some endocrine disruptors and hypospadias in biological samples. J. Environ. Sci. Health, Part A: Toxic/Hazard. Subst. Environ. Eng. 47 (13) (2012) 2173–2179.

[2] N. Nassar, P. Abeywardana, A. Barker, C. Bower, Parental occupational exposure to potential endocrine disrupting chemicals and risk of hypospadias in infants. Occup. Environ. Med. 67 (9) (2010) 585–589.

[3] L. Trasande, S. Sathyanarayana, A.J. Spanier, H. Trachtman, T.M. Attina, E.M. Urbina, Urinary phthalates are associated with higher blood pressure in childhood. J. Pediatr. 163 (3) (2013) 747– 753e1.

[4] E.F. Werner, J.M. Braun, K. Yolton, J.C. Khoury, B.P. Lanphear, The association between maternal urinary phthalate concentrations and blood pressure in pregnancy: The HOME Study. Environ. Health 14 (2015) 75. [5] J.J. Jaakkola, T.L. Knight, The role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: A systematic review and meta-analysis. Environ. Health Perspect. 116 (7) (2008) 845–853.

[6] E.E. Hatch, J.W. Nelson, R.W. Stahlhut, T.F. Webster, Association of endocrine disruptors and obesity: Perspectives from epidemiological studies. Int. J. Androl. 33 (2) (2010) 324–332.

[7] S. Net, A. Delmont, R. Sempere, A. Paluselli, B. Ouddane, Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): A review. Sci. Total Environ. 515-516 (2015) 162–180.

Anhang

 Tab. 2:
 Vorhergesagte Elutionszeiten für Phthalate (erweiterte Liste) auf verschiedenen GC-Säulen von Restek

 Säule: 30m x 0.25mm x 0.25µm (0.20µm für die Rtx-CLPesticides2-Säule); Konstante Lineargeschwindigkeit: 48 m/sec

 Ofen: 150°C (0.8 min). auf 200°C mit 5°C/min. auf 275°C mit 3°C/min (2 min)

Peak- Nr.	Bezeichnung	Gelistet in	Rtx-440 (ArtNr. 12923)	Rxi-XLB (ArtNr. 13723)	Rxi-Sms (ArtNr. 13423)	Rtx-50 (ArtNr. 10523)	Rxi-355il MS (ArtNr. 13823)	Rtx- CLPesticides (ArtNr. 11123)	Rtx- CLPesticides2 (ArtNr. 11323)	CAS-Nr.	Reinheit
1	Dimethylphthalat*	EPA 8061A, EPA Priority	4.606	3.924	3.294	5.912	4.902	3.75	4.334	131-11-3	Rein
2	Dimethylisophthalat	_	5.491	4.690	3.85	6.35	5.498	4.174	4.793	1459-93-4	Rein
3	Diethylphthalat*	EPA 8061A, EPA Priority, EU	6.537	5.642	4.762	7.809	6.785	5.24	6.106	84-66-2	Rein
4	Benzylbenzoat	Interner Standard	9.931	8.667	N/A	11.099	N/A	6.725	8.583	120-51-4	Rein
5	Diisobutylphthalat*	EPA 8061A	11.185	10.029	8.817	11.817	11.008	9.101	10.333	84-69-5	Rein
6	Di-n-butylphthalat*	EPA 8061A, EPA Priority	13.152	11.850	10.405	14.031	13.094	10.481	12.029	84-74-2	Rein
1	Bis(2-methoxyethyl) phthalat*	EPA 8061A	14.343	12.784	11.045	17.095	15.424	11.54	13.725	117-82-8	Rein
8	Bis(4-methyl-2-pentyl) phthalat-Isomer 1*	EPA 8061A	15.192	13.754	12.47	15.184	14.454	12.166	13.825	84-63-9	Rein
9	Bis(4-methyl-2-pentyl) phthalat-Isomer 2*	EPA 8061A	15.350	13.828	12.55	15.277	14.542	12.233	13.906	84-63-9	Rein
10	Bis(2-ethoxyethy()phthalat*	EPA 8061A	16.910	15.132	13.199	19.063	17.59	13.186	15.875	605-54-9	Rein
11	Di-n-pentylphthalat*	EPA 8061A	17.454	15.880	13.856	17.974	17.128	13.588	15.768	131-18-0	Rein
12	Butylcyclohexylphthalat	_	19.452	17.689	15.478	21.19	19.843	14.979	17.96	84-64-0	Technische Qualität
в	Butyl-2-ethylhexylphthalat	-	19.823	18.172	16.174	20.062	19.238	15.566	17.958	85-69-8	Technische Qualität
14	Di-n-hexylphthalat*	EPA 8061A	22.138	20.279	17.984	22.152	21.469	17.215	19.829	84-75-3	Rein
15	Butyloctylphthalat	_	22.338	20.557	18.136	22.37	21.668	17.344	20.009	84-78-6	Technische Qualität
16	Butylbenzylphthalat*	EPA 8061A, EPA Priority, EU	22.799	20.783	18.029	25.365	23.782	17.384	21.128	85-68-7	Rein
17	Hexyl-2-ethylhexylphthalat	EPA 8061A	24.404	22.668	20.266	24.110	23.500	19.126	22.049	75673- 16-4	Technische Qualität
18	Butylisodecylphthalat	-	24.632	22.793	20.392	24.220	23.685	19.424	22.22	42343- 36-2	Technische Qualität
19	Bis(2-ethylhexyl) hexahydrophthalat	-	25.066	23.389	21.254	23.089	23.063	19.142	21.961	84-71-9	Rein
20	Bis(2-n-butoxyethyl) phthalat*	EPA 8061A	25.601	23.563	20.930	26.746	25.647	19.849	23.533	117-83-9	Rein
21	Dicyclohexylphthalat*	EPA 8061A, EPA Priority, EU	26.651	24.495	21.771	28.989	27.671	20.530	24.792	84-61-7	Rein
22	Bis(2-ethylhexyl)phthalat*	EPA 8061A	26.692	24.845	22.585	25.903	25.458	21.135	24.048	117-81-7	Rein
23	Butyl-n-decylphthalat	_	27.362	25.268	22.657	26.888	26.410	21.404	24.471	89-19-0	Technische Qualität
24	Diphenylphthalat	_	27.987	25.712	22.372	32.277	30.170	21.614	26.473	84-62-8	Rein
25	Bis(4-methylcyclohexy() phthalat-Isomer 1	-	28.003	25.922	23.016	29.547	28.476	21.677	25.923	59-43-8	lsomeren- gemisch
26	Bis(4-methylcyclohexyl) phthalat-Isomer 2	_	29.002	26.993	23.816	30.345	29.400	22.604	26.739	59-43-8	lsomeren- gemisch
27	Hexylisodecylphthalat	-	29.176	27.271	24.523	28.189	27.965	23.224	26.336	61702- 81-6	Technische Qualität
28	Benzyl-2- ethythexylphthalat	_	29.791	27.781	24.747	31.498	30.216	23.219	27.594	27215-22-1	Technische Qualität

Tab. 2: (Fortsetzung)

Peak- Nr.	Bezeichnung	Gelistet in	Rtx-440 (ArtNr. 12923)	Rxi-XLB (ArtNr. 13723)	Rxi-5ms (ArtNr. 13423)	Rtx-50 (ArtNr. 10523)	Rxi-35Sil MS (ArtNr. 13823)	Rtx- CLPesticides (ArtNr. 11123)	Rtx- CLPesticides2 (ArtNr. 11323)	CAS-Nr.	Reinheit
29	Bis(4-methylcyclohexyl) phthalat-Isomer 3	_	29.964	28.034	24.617	31.189	30.285	23.498	27.559	59-43-8	lsomeren- gemisch
30	Bis(2-ethylhexyl)isophthalat	_	30.132	28.037	25.684	28.133	28.243	23.907	26.648	137-89-3	Rein
31	Bis(2-(ethoxyethoxy)ethyl) phthalat	_	30.233	28.434	24.879	32.942	31.252	23.995	28.681	117-85-1	Technische Qualität
32	Di-n-octylphthalat*	EPA 8061A, EPA Priority, EU	31.562	29.626	26.796	30.475	30.328	24.915	28.455	117-84-0	Rein
33	n-Hexyldecylphthalat	_	31.680	29.748	26.878	30.788	30.450	24.994	28.566	25724-58-7	Technische Qualität
34	Diphenylisophthalat	—	32.362	29.850	N/A	34.707	32.396	25.114	29.437	744-45-6	Rein
35	Dibenzylphthalat	_	33.234	30.725	27.141	37.396	35.372	25.501	31.359	523-31-9	Rein
36	Diisononylphthalat	EU	33.684	31.802	28.779	32.500	32.708	27.391	30.811	68515-48-0	lsomeren- gemisch
37	Di-n-octylisophthalat	_	34.483	32.463	29.168	32.035	N/A	27.223	30.388	4654-18-6	Rein
38	Diisodecylphthalat	EU	35.775	33.792	30.876	35.041	N/A	29.11	32.169	26761-40-0	lsomeren- gemisch
39	Dinonylphthalat*	EPA 8061A	36.159	34.103	30.994	34.609	34.705	28.867	32.604	84-76-4	Rein
40	n-Octyl-n-decylphthalat	_	36.182	34.170	30.961	34.664	34.7	28.861	32.628	119-07-3	Technische Qualität

Hinweis: Die Schattierung zeigt koeluierende Peaks an (Rs<1.5). Für die einzelnen Säulen zeigen unterschiedliche Schattierungsfarben unterschiedliche Koelutionspaare an.

*Diese Verbindungen sind im Phthalatester-Gemisch von Restek für die EPA- Methode 8061A enthalten

Abb. 1: EPA- und EU-gelistete Phthalate und der interne Standard (Benzylbenzoat) sind im Scanmodus und im SIM-Modus (m/z 293 bzw. m/z 307) für sieben verschiedene stationäre GC-Phasen angezeigt (Bedingungen sind in Tabelle 3 angegeben)

Abb1: Fortsetzung

Rtx-CLPesticides

-7-

Abb. 1: Fortsetzung

Rxi-35Sil MS

Rtx-50

Abb. 1: Fortsetzung

