13.02.2017

Neuer Ansatz für präzisere Ramanspektroskopie



- Anzeige -


Die Verringerung der Emissionslinienbreite eines Moleküls ist eines der Hauptziele der Präzisionsspektroskopie. Ein Ansatz dafür basiert auf der Kühlung von Molekülen bis in die Nähe des absoluten Nullpunkts. Eine alternative Möglichkeit ist die Lokalisierung der Moleküle auf der Subwellenlängenskala. Ein neuartiger Ansatz in dieser Richtung wurde kürzlich von einem gemeinsamen Team des Max-Born-Instituts (A. Husakou) und des Xlim Instituts in Limoges vorgeschlagen. Dieser Ansatz verwendet zur Lokalisierung eine stehende Welle in einer gasgefüllten Hohlfaser. Sie erzeugt für Raman-aktive Moleküle ein Gitter aus tiefen Fallen auf Nanometer-Skala, was zu einer Verringerung der Linienbreite um den Faktor 10.000 führt.

Die Strahlung, die von Atomen und Molekülen emittiert wird, wird üblicherweise durch die Bewegung der Emitter spektral verbreitert, ein Effekt, der Dopplerverbreitung genannt wird. Die Überwindung dieses Effekts ist eine schwierige Aufgabe, insbesondere für Moleküle. Eine Möglichkeit, die molekulare Bewegung zu reduzieren, besteht darin, tiefe Potentialfallen mit kleinen Dimensionen zu erzeugen. Bisher wurde dies - allerdings mit begrenztem Erfolg - dadurch erreicht, dass z.B. mehrere gegenläufige Strahlen in einem komplizierten Aufbau angeordnet wurden.

Die Forscher der Kooperation zwischen Max-Born-Institut und Xlim-Institut zeigen, dass die Subwellenlängen-Lokalisierung und die Verringerung der Linienbreite in einer sehr einfachen Anordnung durch Selbstorganisation von Raman-aktivem Gas (molekularem Wasserstoff) in einer kristallinen, photonischen Hohlfaser möglich sind. Raman-Streuung wandelt das Pumplicht in sogenannte Stokes-Seitenbänder um. Durch Reflexionen an den Faserenden laufen diese Seitenbänder in der Faser hin und her und bilden ein stationäres Interferenzmuster: eine stehende Welle mit alternierenden Bereichen von hohem und niedrigem Lichtfeld. In den Hochfeldregionen ist der Raman-Übergang gesättigt und nicht aktiv. Die Moleküle haben eine hohe potentielle Energie, da sie teilweise im angeregten Zustand sind. In der Niedrigfeldregion sind die Moleküle Raman-aktiv. Sie haben eine niedrige Potentialenergie, da sie nahe am Grundzustand sind. Diese Niedrigfeldregionen bilden ein Gitter von etwa 40.000 schmalen, starken Fallen, die lokalisierte Raman-aktive Moleküle enthalten. Die Größe dieser Fallen beträgt etwa 100 nm, was viel kleiner ist als die Lichtwellenlänge von 1130 nm. Daher haben die emittierten Stokes-Seitenbänder eine sehr schmale Spektralbreite von nur 15 kHz - 10.000 mal schmaler als die doppelverbreiterten Seitenbänder unter den gleichen Bedingungen!

Die Selbstorganisation des Gases manifestiert sich auch auf der makroskopischen Skala. Zunächst zeigen die Berechnungen, dass der Raman-Prozess hauptsächlich genau in dem Faserabschnitt stattfindet, in dem die stehende Welle gebildet wird. Weiterhin führt der makroskopische Gradient des Potentials zur Strömung des Gases zu den Faserenden, was mit bloßem Auge im Experiment beobachtet werden kann. Diese starke Lokalisierung und die Verengung der Linienbreite können zu verschiedenen Anwendungen z.B. in der Spektroskopie führen. Es kann aber auch als ein Verfahren zur periodischen Modulation der Gasdichte verwendet werden, was für die Entwicklung von quasi-phasenangepassten Anordnungen für weitere nichtlineare Prozesse geeignet ist wie z.B. zur effektiven Erzeugung von hohen Harmonischen.

» Originalpublikation

Quelle: Max-Born-Institut



- Anzeige -


Abonnieren:

Empfehlen: