Unsere Seite auf

Nachrichten und Pressemeldungen aus Labor und Analytik

09.09.2015

Neue Mikroskopiertechnik ermöglicht dreidimensionale Bilder von Nervengewebe


Wer das Gehirn verstehen will, muss den mikroskopisch kleinen Schalteinheiten im Gehirn bei der Arbeit zuschauen können - den Nervenzellen. Mit den herkömmlichen Lichtmikroskopen geht das nicht. Erst die Mikroskope von Winfried Denk und seinen Kollegen machen die Gestalt von Nervenzellen und ihre Veränderungen im intakten Gehirn sichtbar. Neurowissenschaftler können dadurch heute Nervenzellen im lebenden Gehirn beobachten und dreidimensionale Bilder von Nervengewebe mit all seinen synaptischen Verbindungen erzeugen. Für diese bahnbrechenden Arbeiten erhält Winfried Denk den mit 50.000 Euro dotierten Zülch-Preis.

Mit dem Lichtmikroskop fing alles an: Einfache Glaslinsen und einfaches Sonnenlicht genügten den Forschern des 17. Jahrhunderts, um erstmals Zellen beobachten zu können. Heute arbeiten schon Schüler mit Lichtmikroskopen, wenn sie Zellen im Biologie-Unterricht beobachten sollen. Doch Wissenschaftler stoßen mit Lichtmikroskopen schnell an ihre Grenzen; Nervenzellen beispielsweise erscheinen oft unscharf, weil umgebendes Nervengewebe das Licht im Mikroskop zu stark streut. Details bleiben so verborgen. Auch die Aktivität der Zellen lässt sich mit Lichtmikroskopen nicht sichtbar machen.

Mit dem Zwei-Photonen-Fluoreszenzmikroskop, das Winfried Denk in den späten 1980er Jahren gemeinsam mit Jim Strickler und Watt Webb an der Cornell Universität in den USA entwickelte, können Forscher dagegen Nervenzellen mit bis dahin unerreichter Klarheit untersuchen. Aber nicht nur das: Mit einem Zwei-Photonen-Mikroskop können sie die Zellen sogar im lebenden Gehirn und über lange Zeitspannen hinweg beobachten. Ein weiterer Vorteil: Das Licht dringt tief ins Gewebe ein und macht auch Zellen sichtbar, die bis zu einem Millimeter unter der Oberfläche liegen. Das ist etwa 20-mal tiefer als ein herkömmliches Lichtmikroskop in Nervengewebe eindringen kann.

Inzwischen erforschen Neurowissenschaftler weltweit mit Zwei-Photonen-Mikroskopen die Funktionsweise von Nervenzellen. Ohne die Technik wären viele Erkenntnisse über das Gehirn der letzten Jahre nicht möglich gewesen - eine Entwicklung, die zu der Geburtsstunde der Zwei-Photonen-Mikroskopie vor 25 Jahren nicht absehbar war.

Zwei-Photonen-Mikroskope sind eine weiterentwickelte Form der Fluoreszenzmikroskopie. Herkömmliche Fluoreszenzmikroskope verwenden kurzwelliges blaues oder ultraviolettes Licht und regen damit Farbstoffe in der Zelle zum Leuchten an. Dadurch wird die Zelle für den Beobachter sichtbar. Gleichzeitig schädigt das energiereiche Licht aber auch die Zelle. Beim Zweiphotonen-Fluoreszenzmikroskop wird dagegen energiearmes rotes oder infrarotes Laserlicht verwendet. Lichtteilchen (Photonen) mit dieser Wellenlänge besitzen jedes für sich jedoch nicht genug Energie, um den Farbstoff anzuregen. Wenn aber zwei Photonen gleichzeitig auf ein Farbstoffmolekül treffen, addiert sich ihre Energie und bringt den Farbstoff zum Leuchten. Auf diese Weise können Forscher die bäumchenartigen Fortsätze von Nervenzellen mit ihren Synapsen analysieren. Farbstoffe, die nur in aktiven Nervenzellen zum Leuchten angeregt werden, verraten den Wissenschaftlern darüber hinaus, wann und wie stark eine Zelle elektrisch aktiv ist.

Winfried Denk interessiert sich jedoch nicht nur für einzelne Nervenzellen und ihre Aktivität, er möchte auch die Verknüpfungen der Zellen untereinander aufklären. Sein Ziel ist es, ein komplettes Verschaltungsdiagramm des Gehirns einer Maus zu erstellen, das Konnektom. Dafür hat er vor rund zehn Jahren das serielle Raster-Elektronenmikroskop entwickelt ("serial block-face"- Raster-Elektronenmikroskop). Im Unterschied zum Zwei-Photonen-Mikroskop beleuchtet es das Gewebe nicht mit Licht, sondern mit einem Elektronenstrahl. Dadurch kann das serielle Raster-Elektronenmikroskop noch kleinere Details sichtbar machen, allerdings nicht in lebendem Gewebe.

Die Probe wird zunächst in einem speziellen Verfahren präpariert und anschließend von einem Elektronenstrahl abgescannt. Ein Schneide-Automat entfernt anschließend eine nur wenige Tausendstel Millimeter dünne Gewebeschicht für das nächste Bild. Aus den zweidimensionalen Bildern der einzelnen Ebenen können die Forscher am Computer ein dreidimensionales Bild zusammensetzen.

Denk ist es damit gelungen, die mühsame und fehleranfällige Produktion der Schnittserien zu automatisieren. Mit dieser Methode haben er und seine Kollegen bereits Schaltkreise der Netzhaut im Auge einer Maus analysiert. Allein in einem Netzhaut-Würfel mit einem Zehntel Millimeter Kantenlänge entdeckten die Wissenschaftler knapp 1000 Nervenzellen mit rund einer halben Million Verbindungen. Angesichts dieser Zahlen lässt sich leicht vorstellen, wie komplex das Konnektom des 200.000-mal größeren Mäusegehirns ist. Nur mit einem solchen Schaltplan können Wissenschaftler aber die Funktionsweise des Gehirns entschlüsseln und Erkrankungen des Nervensystems besser verstehen.

Winfried Denk ist in München geboren und hat in seiner Heimatstadt an der Ludwig-Maximilians-Universität sowie in Zürich (Schweiz) an der Eidgenössisch Technischen Hochschule Physik und Biophysik studiert. Seine Doktorarbeit schrieb er an der Cornell University in den USA im Labor von Watt W. Webb. Nach einem kurzen Aufenthalt im IBM-Forschungslabor in Rüschlikon (Schweiz) arbeitete er mehrere Jahre in den Bell Laboratories im US-Bundesstaat New Jersey. 1999 kehrte er nach Deutschland zurück und wurde Direktor am Max-Planck-Institut für medizinische Forschung in Heidelberg. Seit 2002 ist er Honorarprofessor an der Universität Heidelberg. Inzwischen ist er Direktor der Abteilung Elektronen-Photonen-Neuronen am Max-Planck-Institut für Neurobiologie in Martinsried bei München.

Die Verleihung des K.-J.-Zülch-Preises 2015 fand am 4. September statt.

Quelle: Max-Planck-Gesellschaft




—> alle Nachrichten dieser Firma

Abonnieren:

Empfehlen: