Unsere Seite auf

Nachrichten und Pressemeldungen aus Labor und Analytik

16.04.2015

Eigenschaften organischer Leuchtdioden aufgrund der chemischen Zusammensetzung voraussagen


Wissenschaftler des Mainzer Max-Planck-Institut für Polymerforschung (MPI-P), der BASF Ludwigshafen, der Universität Ulm und des Innovation Lab in Heidelberg entwickeln ein Simulationspaket für die Berechnung der Eigenschaften organischer Leuchtdioden, bei dem ausschließlich die chemische Zusammensetzung benötigt wird. Das Paket ist in die kostenlose Software VOTCA integriert und hilft passende organische Moleküle für Beleuchtungsanswendungen und Displays vorauszuwählen.

Eine von Projektleiter Dr. Denis Andrienko geführte Forschungsgruppe am MPI-P (Theorie Gruppe unter Leitung von Prof. Kurt Kremer) hat Multiskalen-Techniken entwickelt, die es ermöglichen die makroskopischen Eigenschaften organischer Leuchtdioden (OLEDs) ausgehend von der chemischen Zusammensetzung vorherzusagen. Die Verbindung zwischen molekularer und makroskopischer Größenordnung wird durch eine Kombination von "Coarse-Graining" mit einem effizienten Simulationsalgorithmus möglich. Doktorand Pascal Kordt und Postdoktorand Dr. Jeroen van der Holst haben, zusammen mit anderen Entwicklern, die Implementierung dieser Ideen ausgeführt. Es können nun Elektronen- und Exzitonenbewegung in makroskopisch großen OLED-Schichten simuliert werden, d.h. Schichten von ca. 100 Nanometern.

Denis Andrienko erklärt den industriellen Nutzen der Software: "Moderne Handys nutzen bereits OLED Displays, OLED-Fernseher kommen auch bereits auf den Markt. Dennoch werden in der Forschung nach neuen Materialen diese oft einfach 'ausprobiert'. In unserem Ansatz können die Struktur der Materialien (Morphologie) sowie die Ladungsträgerbewegung darin systematisch vorhergesagt werden, ausgehend nur von der chemischen Strukturformel. Verglichen zu Experimenten ist so eine direkte Verbindung zwischen Chemie und Morphologie möglich." Seine Erwartung ist, dass diese computerbasierte Forschung in den kommenden Jahren stark wachsen wird, da sie Firmen viel Geld für die Synthese und Charakterisierung neuer Materialien sparen kann. Diese Erwartung wird vom Europäischen Forschungsrat und dem Bundesministerium für Bildung und Forschung geteilt, die das Projekt finanziell unterstützen.

Der Nobelpreis in Physik 2014 wurde für die Erfindung effizienter, blauer lichtemittierender Dioden (LEDs) an Isamu Akasaki, Hiroshi Amano und Shuji Nakamura verliehen. LEDs findet man als Anzeige in Weckern oder Unterhaltungselektronik, sie finden Verwendung in Taschenlampen oder in großen Displays, wo winzige rote, grüne und blaue LEDs einen Pixel formen und Millionen von Pixeln ein Bild. In jedem Pixel findet konstant die Rekombination von Elektronen mit ihren Gegenstücken (Löchern) statt. Dabei werden Photonen, die Elementarteilchen des Lichts erzeugt. In Abhängigkeit des verwendeten Materials haben diese Photonen verschiedene Energien, oder Wellenlängen, was die Farbe des Lichts bestimmt. Herkömmliche LEDs werden aus anorganischen Materialien hergestellt und zeichnen sich durch lange Haltbarkeit aus. Die ist bei organischen Halbleitern teilweise noch ein Problem, die jüngste Entwicklung zeigt jedoch, dass diese andere, vorteilhafte Eigenschaften mitbringen: extrem hohe Kontrastraten und die Möglichkeit gekurvte oder flexible Displays herzustellen.
Die Aufgabe von Computersimulationen ist es, die Suche nach passenden Materialien zu unterstützen. Selbst mit modernen Supercomputern ist es jedoch nicht möglich eine komplette OLED mit den Details aller Atome zu simulieren. Daher werden Multiskalensimulationen genutzt: zuerst werden die Eigenschaften eines einzelnen Moleküls auf quantenmechanischer Ebene berechnet. Anschließend wird ein klassisches Modell des Moleküls parametrisiert, das dazu dient Systeme mehrerer Tausend Moleküle zu untersuchen. OLEDs sind jedoch aus Schichten in der Größenordnung von 100 Nanometern aufgebaut (Millionen von Molekülen). Im Softwarepaket VOTCA wird ein stochastisches Modell genutzt, das die Verteilung relevanter mikroskopischer Eigenschaften (z.B. den Abstand zwischen Molekülen) nachbildet, und dann genutzt werden kann um eine komplette OLED zu simulieren.

Trotz eines klaren Plans für die Erforschung neuer OLED Materialien bleibt die Forschung immer spannend, da die Methoden und die Software ständig weiterentwickelt werden.

—> Originalpublikation

Quelle: Max-Planck-Institut für Polymerforschung (MPI-P)




—> alle Nachrichten dieser Firma

Abonnieren:

Empfehlen: