Unsere Seite auf

Nachrichten und Pressemeldungen aus Labor und Analytik

03.03.2015

Umwandlung komplexer organischer Schadstoffe zu Biogas durch Mikroorganismen


Wissenschaftler am Potsdamer Leibniz-Institut für Agrartechnik (ATB) konnten zeigen, dass sich mithilfe von anaeroben Mikroorganismen im Biogasprozess auch komplexe organische Schadstoffe verwerten lassen. Phenole, Furane, Aldehyde und Ketone, die häufig in den flüssigen Nebenprodukten aus der thermochemischen Umwandlung von Biomasse auftreten, lassen sich einfach und effektiv zu Biomethan abbauen. Damit ist die Grundlage geschaffen, um Verkohlungsprozesse wie die Hydrothermale Karbonisierung (HTC) und die Pyrolyse nachhaltig und effizient in Bioraffinerien einzugliedern.

Die Verfahren zur Herstellung von Stoffen und Materialien aus nachwachsenden Rohstoffen beruhen in der Regel auf biologischen oder thermochemischen Prozessen. Letztere bieten den Vorteil einer hohen Reaktionsgeschwindigkeit. Bei Temperaturen von 250°C und mehr lassen sich organische Verbindungen, auch biologisch nur schwer abbaubare wie Lignin, rasch aufschließen. Thermochemische Prozesse sind jedoch sehr unspezifisch in der Produktbildung: Neben den gewünschten Wertstoffen fallen auch mehr oder weniger problematische organische Nebenprodukte an. Dies verringert die Ausbeute und verursacht zusätzliche Kosten für die Abwasserreinigung.

Forscher der Nachwuchsgruppe APECS am ATB widmeten sich in ihrer Arbeit den flüssigen Nebenprodukten aus der thermochemischen Umwandlung von Biomasse. Untersucht wurden Abwässer aus der HTC sowie aus der Pyrolyse. Beide Prozesse sind vielseitig anwendbar und lassen eine hohe Relevanz in zukünftigen Bioraffineriekonzepten erwarten. Das Problem bisher: Diese Prozesse erzeugen Abwässer, die eine hohe Belastung mit diversen Schadstoffen wie Phenole, Furane, Aldehyde und Ketone aufweisen.

Hauptprodukt beider Prozesse ist Biokohle, ein kohlenstoff- und energiereicher Feststoff, der als Energieträger Verwendung finden kann, aber auch für eine Reihe weiterer Anwendungsbereiche geprüft wird - von der Bodenverbesserung bis zur Elektrotechnik. Nebenprodukte bei der Pyrolyse sind das sogenannte Syngas, ein energetisch gut verwertbares Gas, sowie ein Kondensat aus flüchtigen Verbindungen, für das es gegenwärtig noch keine ideale Nutzung gibt. Bei der HTC fällt insbesondere eine flüssige Substanz an, die reich ist an verschiedenen organischen und mineralischen Verbindungen. Beide Abwässer erfordern eine gründliche Aufbereitung, bevor sie zurück in die Umwelt gelangen.

Die Potsdamer Forscher berichten über die erfolgreiche anaerobe biologische Umwandlung wasserlöslicher Pyrolysekondensate in Labortests. Die Kondensate stammten aus der Verkohlung von Gärresten von der Biogasproduktion durch Pyrolyse bei Temperaturen von 330 bis 530°C. Ein Großteil der organischen Verbindungen konnte im Biogasprozess zum energiereichen Biomethan ab- bzw. umgebaut werden. Nach der biologischen Behandlung waren die untersuchten toxischen Verbindungen 5-HMF, Furfural, Phenol, Catechol und Guajacol nicht mehr nachweisbar. Eine Ausnahme bildete Kresol, das immerhin um 10 bis 60 % reduziert werden konnte. Starken Einfluss zeigte die Pyrolysetemperatur: je höher die Temperatur bei der Verkohlung ist, desto weniger organische Substanz ist abbaubar. So führte eine Erhöhung der Pyrolysetemperatur von 330°C auf 530°C dazu, dass statt 57% nur noch 37% des als chemischer Sauerstoffbedarf (CSB) ausgewiesenen Gesamtgehalts an organischen Stoffen abgebaut werden konnten.

"Unsere Ergebnisse zeigen die vielfältigen Möglichkeiten, wie thermochemische Prozesse wie die Pyrolyse und die HTC synergetisch mit der Biogaserzeugung verschaltet werden können", unterstreicht Projektleiter Dr. Jan Mumme den Mehrwert dieser Verfahrenskombination. "Neben der Biokohle kann so zusätzlich Energie in Form von Biogas gewonnen werden", ergänzt Nachwuchswissenschaftler Tobias Hübner. "Die Kopplung thermochemischer und biologischer Verfahren im Sinne einer Bioraffinerie ist gegenwärtig ein stark beforschtes Thema. Mit unseren Arbeiten möchten wir einen wichtigen Beitrag für die Wirtschaftlichkeit und Nachhaltigkeit dieser Systeme zu leisten", so Mumme.

Dass sich Abwässer aus der HTC gut als Ausgangsstoff für die Biogasgewinnung eignen, konnten die APECS-Wissenschaftler bereits 2013 belegen. In weiteren Arbeiten zusammen mit dem Fraunhofer Institut für Chemische Technologie ICT Pfinztal gelang es zudem, einzelne Stoffe mittels NIR-Technik in der HTC-Flüssigkeit zu erfassen - eine wichtige Grundlage, um die Umwandlungsprozesse gezielt in Richtung gewünschter Produkte zu lenken.

—> Originalpublikation 1

—> Originalpublikation 2

—> Originalpublikation 3

Quelle: Leibniz-Institut für Agrartechnik Potsdam-Bornim (ATB)




Abonnieren:

Empfehlen: