Unsere Seite auf

Nachrichten und Pressemeldungen aus Labor und Analytik

25.04.2014

Atomare Oberflächenstruktur auch in viskosen Flüssigkeiten sichtbar gemacht


Stefan Weber, Physiker am Max-Planck-Institut für Polymerforschung (MPI-P), hat eine Methode entwickelt, mit der die Struktur von Oberflächen in verschiedenen Flüssigkeiten mit unerreichter Genauigkeit gemessen und abgebildet werden kann. Webers Verfahren basiert auf Messungen mit dem Rasterkraftmikroskop und ist in der Lage, atomare Strukturen an Oberflächen im Detail abzubilden. Bislang ist das ausschließlich in dünnflüssigen Lösungen wie Wasser gelungen. Zähere Flüssigkeiten wie zum Beispiel Öle oder Elektrolyte erschweren diese Messungen erheblich.

Weber gelang es nun, in solch einer zähflüssigen Umgebung die Struktur von Oberflächenatomen abzubilden - und das mit erstaunlich geringem Rauschen und fast ohne Bildstörungen. Die Flüssigkeit war sogar 30mal so zähflüssig wie Wasser. Zusammen mit Forschern des University College Dublin (Irland) hat Weber den Einfluss der Zähigkeit (auch Viskosität genannt) auf das Rauschen der Messungen untersucht. Der Mainzer Physiker stellt die Ergebnisse nun zusammen mit den irischen Wissenschaftlern in der Fachzeitschrift Nanotechnology vor. "Eine so hohe Auflösung in zähflüssigen Lösungen zu erreichen, ist beeindruckend", sagt Weber. "Diese Erkenntnisse helfen uns bei vielen praktischen Problemen weiter. Zum Beispiel enthalten Brennstoffzellen oder elektrochemischen Batterien viskose Flüssigkeiten." Webers Methode ist prädestiniert, diese atomar genau zu vermessen.

Rasterkraftmikroskopie ist eine etablierte Methode, um Bilder von atomaren Strukturen an Oberflächen zu erzeugen. Dafür tastet eine Messnadel, an ihrer Spitze selbst nicht mehr als einige Atome breit, die Oberfläche einer Probe ab. Die Nadel ist Teil eines elastischen Federarms (Cantilever), der Kräfte registriert, die zwischen den Oberflächenatomen und den Atomen an der Nadelspitze wirken. Um höchste Auflösungen zu erreichen, lässt man die Nadel schwingen. Zähere Flüssigkeiten als Wasser dämpfen diese Schwingungen. Daraus resultiert ein Rauschen, das das Messen der feinen Oberflächenkräfte erschwert. Stefan Weber experimentierte mit einem Glyzerin-Wasser-Gemisch auf einer Graphitoberfläche, um den Einfluss des Rauschens systematisch zu ermitteln. "Zu meiner Überraschung war das Bild erstaunlich klar und beinahe rauschfrei", erinnert sich Weber. Unter anderem stellte sich heraus, dass es entscheidend war, die Schwingungsamplitude des Cantilevers kleiner einzustellen als den Durchmesser der Moleküle der Flüssigkeit. Mit diesen Erkenntnissen könnten viele offene Fragen der Oberflächenphysik neu aufgerollt werden, die u.a. bei der Entwicklung von effektiveren Brennstoffzellen und die Batterietechnik hilfreich sind.

Stefan Weber forscht seit 2012 am MPI-P im Arbeitskreis von Direktor Hans-Jürgen Butt. Schon während seiner Promotion und als Postdoc in Dublin setzte er sich mit der Rasterkraftmikroskopie auseinander und entwickelte das Verfahren weiter. In seiner Zeit am MPI-P hat er ein bestehendes Rasterkraftmikroskop umgebaut und für rauscharme Messungen in Flüssigkeiten optimiert. Damit untersucht er grundlegende Effekte wie die molekulare Selbstorganisation an flüssig-festen Grenzflächen.

—> Originalpublikation

Quelle: Max-Planck-Institut für Polymerforschung (MPI-P)




—> alle Nachrichten dieser Firma

Abonnieren:

Empfehlen: