Unsere Seite auf

Nachrichten und Pressemeldungen aus Labor und Analytik

22.02.2006

Nanostrukturen erstmals in 3D


In der Abteilung Mikrostrukturphysik und Umformtechnik des Max-Planck-Instituts für Eisenforschung in Düsseldorf wurde das weltweit erste Elektronenmikroskop eingeführt und in Betrieb genommen, mit dem man gleichzeitig und automatisiert den Phasengehalt, die Textur und die Grenzflächen von Materialien in drei Dimensionen untersuchen kann. Das Gerät besteht aus einem Höchstauflösungs-Rasterelektronenmikroskop und einem Ionen- bzw. Atommikroskop. Die beiden bisher in der Forschung getrennt genutzten Mikroskope sind nun zu einem einzigen neuen leistungsfähigen Instrument integriert (ZEISS 1540 XB), das zudem über ein umfangreiches Arsenal an Detektoren für die Messung von Beugungsmustern zur Orientierungsbestimmung und zur chemischen Analyse verfügt. Diese 3D-Technik erlaubt Einblicke in die Mikrostruktur von Nanomaterialien, biologischen Werkstoffen oder auch von höchstfesten Stählen, wie sie von anderen Mikroskopie-Verfahren nicht geliefert werden können (Acta Materialia 54 (2006) 1369).

Für die Materialwissenschaften ist die Möglichkeit, Mikrostrukturen dreidimensional untersuchen zu können, von großer Bedeutung. Dazu gibt es heute zwei Herangehensweisen: Zum einen untersucht man Materialien mit Hilfe von Röntgen-, Elektronen- oder Neutronen-Strahlung. Diese Methoden sind nicht-destruktiv und aus den gewonnenen Bildern kann man die dreidimensionale Struktur rekonstruieren. Von Nachteil ist, dass diese Methoden zu wenig Informationen, speziell bei kristallinen Materialien liefern und zeitaufwändig sind. Darüber hinaus sind sie in der Ortsauflösung gegenwärtig um etwa zwei Größenordnungen schlechter als das hier vorgestellt elektronenmikroskopische 3D-Verfahren (ca. 40 Kubik-Nanometer).

Der zweite Ansatz besteht darin, das Material scheibchenweise aufzunehmen und die gewonnenen Informationen dann in drei Dimensionen tomographisch zu rekonstruieren. Das dreidimensionale Messprinzip des neuen Mikroskops besteht darin, dass man mit dem Elektronenmikroskop zunächst eine zweidimensionale Abbildung mit der gewünschten kristallographischen oder chemischen Methode durchführt und anschließend mit dem Ionenstrahl eine Scheibe des Materials mit nanoskopischer Präzision abschneidet, so dass nun die darunter liegende Schicht analysiert werden kann. Auf diese Weise kann man Scheibe für Scheibe analysieren und abtragen, so dass am Ende ein digitales dreidimensionales Bild entsteht.

Das komplett in situ arbeitende Mikroskop arbeitet voll automatisch, so dass relativ große Regionen in einem Festkörper, beispielsweise 70 x 70 x 70 Mikrometer, untersucht werden können. Die Kombination eines automatisierten Materialabtrags mit einem hochauflösenden Mikroskop liefert ein Spektrum an kristallographischen Informationen, das die Möglichkeiten der meisten anderen Mikroskopietechniken weit übertrifft. Dazu gehört die genaue Form von eingelagerten Kristallen, Position und kristallographische Eigenschaften interner Grenzflächen, die Defektdichte in Körnern und die Textur bei sehr kleinen Abmessungen. All diese Eigenschaften können mit einer Auflösung von etwa 40 Kubik-Nanometern und materialabhängig auch weniger gemessen werden.

Quelle: Max-Planck-Gesellschaft




—> alle Nachrichten dieser Firma

Abonnieren:

Empfehlen: