Unsere Seite auf

Nachrichten und Pressemeldungen aus Labor und Analytik

30.03.2005

Neues Verfahren zur Röntgenanalytik im Nanometerbereich


Physiker der Universität Göttingen haben einen energiereichen "harten" Röntgenstrahl so gebündelt und fokussiert, dass sie damit molekulare Strukturen von Proben mit Abmessungen im Nanometerbereich untersuchen können. Die Forscher am Institut für Röntgenphysik entwickelten dazu eine Kanalkonstruktion als "Wellenleiter", mit dem ein quasi-punktförmiger Röntgenstrahlfleck produziert wird. Damit lässt sich die Röntgenstrukturanalyse mit hoher räumlicher Auflösung durchführen. Dabei gelang es dem Wissenschaftlerteam unter der Leitung von Prof. Dr. Tim Salditt, den derzeit kleinsten energiereichen Röntgenstrahl mit einer Photonenenergie oberhalb von 10 Kiloelektronenvolt zu erzeugen. In Zukunft ist es nun möglich, einzelne Molekülgruppen, Zellbestandteile und Nanokristalle isoliert zu "beleuchten" und aussagekräftige Daten zu gewinnen. In der Fachzeitschrift Physical Review Letters vom März 2005 wurde die Neuentwicklung erstmals öffentlich vorgestellt.

Röntgenstrahlen liefern den Großteil der molekularen Strukturinformation in fast allen wissenschaftlichen Disziplinen, beispielsweise in den Werkstoffwissenschaften und der Strukturbiologie. Seit mehr als 30 Jahren erproben Forscher weltweit Möglichkeiten, die Röntgenstrahlung auf einen immer kleineren Brennpunkt zu richten und die Intensität des Strahls zu erhöhen, um damit etwa Strukturen im Nanobereich analysieren zu können. "Mit Hilfe eines Nano-Leiters, einem winzigen lithographisch hergestellten Kanal, ist es uns gelungen, einen intensiven und extrem fokussierten Strahl zu erzeugen", sagt Prof. Salditt. Der von absorbierendem Silizium umgebene Kanal ist einige Millimeter lang, aber nur 30 millionstel Millimeter hoch und 70 millionstel Millimeter breit. "Im Verhältnis von Länge, Breite und Höhe entspricht unsere Struktur etwa einem 1.000 Kilometer langen Autobahntunnel", erläutert Prof. Salditt. In diesem Kanal breitet sich die Röntgenwelle aus und wird über die gesamte Länge in das erwünschte und exakt berechenbare Profil gebracht. "Am Ende verlässt der Strahl den Nano-Kanal mit einem Durchmesser von 25 Nanometern in vertikaler und 47 Nanometern in horizontaler Richtung", erläutert Ansgar Jarre, der derzeit seine Doktorarbeit über das Thema abschließt.

In einem früheren Experiment konnten die Wissenschaftler erstmals das Prinzip des Kanalwellenleiters demonstrieren. Die Physiker haben jetzt im Vergleich dazu eine Intensitätssteigerung um mehr als das Hundertfache und eine weitere Verkleinerung des Röntgenstrahls erreicht. Mit dem in Göttingen erzielten kleinsten harten Röntgenstrahl wollen die Forscher in Zukunft Objekte mit Abmessungen von 1/10.000 bis 1/100.000 Millimeter beleuchten und abbilden. Sie nutzen dabei das Phänomen, dass sich der Strahl nach dem Austritt aus der Kanalstruktur divergent ausbreitet, etwa wie der Strahlkegel einer Taschenlampe. "Durch diesen Effekt kann der präparierte Röntgenstrahl einzelne Objekte, wie zum Beispiel Nanokristalle, Molekülgruppen und Zellorganellen, erfassen und ohne Linsen auf einen Detektor vergrößern. Statt eines direkten Bildes erhalten wir auf diese Weise ein Röntgenhologramm, aus dem sich die Struktur des Objektes ohne Informationsverlust errechnen lässt", erläutert Prof. Salditt, der zur Zeit mit seinen Mitarbeitern das nächste Expertimet an der Europäischen Synchrotronstrahlungsquelle in Grenoble (Frankreich) plant. Ob in Zukunft noch wesentlich kleinere Strahldurchmesser erreicht werden können, ist nach Aussage des Wissenschaftlers fraglich. Eine theoretische Berechnung weist derzeit eine Grenze von etwa zehn Nanometern aus. "Dieser Größe sind wir nun schon sehr nahe gekommen", betont Prof. Salditt.

Quelle: idw/Universität Göttingen




—> alle Nachrichten dieser Firma

Abonnieren:

Empfehlen: