Analytik NEWS
Das Online-Labormagazin
29.03.2024
Glossar durchsuchen

Linksammlung durchsuchen

Molekulare Orientierung als Kontrastmechanismus in der Fluoreszenzmikroskopie und konfokale Multidetektor-Scanning-Mikroskopie

Grunwald, Matthias - Georg-August-Universität Göttingen (2015)


Die vorliegende Arbeit befasst sich mit zwei neuen methodischen Ansätzen auf dem Gebiet der Fluoreszenzmikroskopie. Im ersten Teil der Arbeit wir eine Methode vorgestellt, mit der die Winkelselektivität der Fluoreszenzanregung verbessert werden kann. Die ExPAN (excitation polarization angle narrowing) genannte Technik nutzt stimulierte Emission, um den Effekt der Photoselektion zu vergrößern. ExPAN lässt sich potentiell für verschiedene Methoden einsetzen, in denen fluoreszenzmarkierte Proben untersucht werden und ist insbesondere im Kontext von Fluoreszenzanisotropie-Messungen oder der Bestimmung von molekularen Orientierungen von Interesse. Solche Methoden finden in den Biowissenschaften breite Anwendung und werden z.B. zum Studium von Rezeptor-Liganden-Interaktionen oder der Proteindynamik eingesetzt.

Im Rahmen der Arbeit wird ExPAN in Kombination mit einem neuen Ansatz in der Weitfeldmikroskopie untersucht, bei der die Orientierung von Farbstoffmolekülen als Kontrastmechanismus genutzt wird. Dabei wird die Polarisationsrichtung des Anregungslichts rotiert, um Informationen über die molekulare Orientierung zu gewinnen. Aufgrund der Photoselektion weist das Fluoreszenzsignal von Molekülen mit bevorzugter Ausrichtung dadurch eine periodische Modulation auf. Es wird gezeigt, dass diese Information zur Unterscheidung von Molekülen mit abweichender Orientierung genutzt werden kann, selbst wenn sich deren Signale räumlich überlagern. Für die Versuche wurde ein modifiziertes Weitfeld-Mikroskop konstruiert und die Methode zum einen experimentell an Einzelmolekülen und zum anderen mittels Simulationen erprobt. Dabei konnten Signale von Farbstoffmolekülen mit einem Abstand von bis zu 80 nm separiert werden. Darüber hinaus wurde ein moduliertes Fluoreszenzsignal bei oberflächenmarkierten Mikropartikeln in wässriger Lösung sowie bei fixierten biologischen Proben beobachtet. Eine Verbesserung der Photoselektion durch ExPAN wird experimentell nachgewiesen und gezeigt, dass mit ExPAN auch ähnlich orientierte Moleküle unterschieden werden können.

Im zweiten Teil der Arbeit wird eine Methode zur Verbesserung der Auflösung von konfokalen Laser-Scanning-Mikroskopen vorgestellt, die als Multidetektor-Scanning (MDS) bezeichnet wird und auf dem Prinzip der Image-Scanning-Mikroskopie (ISM) beruht. Mit ISM lässt sich die Auflösung von Fluoreszenzmikroskopen theoretisch verdoppeln. Da ISM einen Flächendetektor voraussetzt, wurden in der Vergangenheit hauptsächlich CCD oder CMOS Kameras als Detektoren eingesetzt. In dieser Arbeit werden anstelle einer Kamera mehrere Einzelphotonendetektoren verwendet und über ein Glasfaserbündel zu einem Flächendetektor kombiniert. Dadurch ist es erstmals möglich, die Methode in Verbindung mit Fluoreszenzlebensdauer-Mikroskopie (FLIM) einzusetzen. FLIM hat sich in den Biowissenschaften als wichtige Mikroskopie-Technik etabliert und wird unter anderem bei Protein-Protein-Interaktionsstudien oder zur Untersuchung des NADH-Metabolismus eingesetzt. Die Verbesserung der räumlichen Auflösung von FLIM mit MDS ist somit für eine Reihe von biologischen Fragestellungen von potentiellem Interesse.

Im Rahmen der Arbeit wurde ein Multidetektor-Scanning-Mikroskop konstruiert und durch die Vermessung von fluoreszierenden Mikropartikeln charakterisiert. Eine Verbesserung der Auflösung durch MDS wird an fixierten biologischen Proben demonstriert. Dabei wurde eine Auflösung von 168 nm mit MDS sowie 146 nm mit MDS und Dekonvolution erreicht. Schließlich wird die Kombination der Methode mit Fluoreszenzlebensdauer-Mikroskopie demonstriert.


» Volltext