Unsere Seite auf

Nachrichten und Pressemeldungen aus Labor und Analytik

14.10.2015

Spontane chemische Prozesse bei Bildung komplexer Biomoleküle beobachtet


Wissenschaftler am Institut für Organische Chemie der Universität Stuttgart haben festgestellt, dass unter bestimmten Bedingungen spontane Reaktionen zwischen Ribonucleotiden und Aminosäuren ablaufen, die zu Molekülen führen, die sowohl Ribonukleinsäure (RNA) als auch Peptide enthalten. Die Beobachtungen geben Hinweise auf eine primitive Vorform der Proteinsynthese, wie sie in der präbiotischen Evolution hätte ablaufen können. Damit wird es wahrscheinlicher, dass das Leben nicht mit einer reinen 'RNA-Welt' begann, sondern mit einer molekularen Welt, in der sowohl RNA als auch kleinste Proteine gebildet wurden.

Das Leben beruht auf einer komplizierten biochemischen Maschinerie, deren Ursprünge bislang noch nicht klar sind. Die wichtigsten biochemischen Maschinen sind Enzyme (Proteine). Die Baupläne der Enzyme sind in der DNA abgelegt und werden mit Hilfe der RNA und Enzymen abgelesen. Ohne Enzyme also keine Ablesung und ohne Baupläne und RNA keine Enzyme. Bisher wurde als Lösung für dieses Dilemma vermutet, dass es zuerst eine sogenannte 'RNA-Welt' gab, in der RNA sowohl als Bauplan fungierte, als auch enzymähnliche Aufgaben wahrnahm. Diese Hypothese wurde durch experimentelle Befunde gestützt. Doch wie aus der RNA-Welt die RNA-Enzyme-Welt entstanden ist, war nicht klar.

Unerwartete Beobachtung: Bildung von Peptidyl-RNAs

Jetzt haben Forscher an der Universität Stuttgart festgestellt, dass spontane Reaktionen zwischen den Grundbausteinen von RNA, den Ribonucleotiden, und Aminosäuren ablaufen, wenn sie in einem speziellen wässrigen Puffer in Kontakt miteinander kommen. Der Puffer enthält ein Kondensationsmittel, das für eine spontane Verknüpfung der Grundbausteine sorgt. In den Mischungen entstehen nicht nur RNA-Ketten sondern auch Mischformen aus RNA und Peptiden (dem Material, aus dem Enzyme und Proteine aufgebaut sind). Diese Mischform wird Peptidyl-RNA genannt. Aus Peptidyl-RNAs haben sich möglicherweise Teile der biochemischen Maschinerie zur Proteinsynthese entwickeln können.

Die Beobachtung kam unerwartet: Eigentlich war das Team um Prof. Clemens Richert auf der Suche nach Reaktionsbedingungen gewesen, die zu einer enzymfreien Ablesung von RNA-Sequenzen führen. Als der Doktorand Mario Jauker Bedingungen einstellte, wie sie in Eis-Wasser-Mischungen beim Gefrieren von Meerwasser auftreten können und er ein potentes Kondensationsmittel zugab, beobachtete er neben den erwarteten Ablesevorgängen auch die Entstehung von neuen RNA-Ketten. Da das Kondensationsmittel, ein organisches Derivat des Moleküls Cyanamid, auch in der Peptidsynthese eingesetzt wird, mischte der Chemieingenieur Helmut Griesser Aminosäuren zu den RNA-Bausteinen. Überraschenderweise entstanden in den salzhaltigen Pufferlösungen nun nicht nur RNA-Ketten und freie Peptide, sondern auch Peptidyl-RNAs. Solche Peptidyl-RNAs gelten seit Längerem als Schlüsselintermediate einer frühen Form der Proteinsynthese.

In der heutigen Proteinsynthese wächst die Peptidkette bis zu einem Protein, indem sie von einer Transfer-RNA zur nächsten wandert, wobei jeweils eine Aminosäure gemäß dem genetischen Code eingefügt wird. Frühere Versuche, die Entstehung von Peptidyl-RNAs in Abwesenheit von Enzymen zu induzieren, waren erfolglos geblieben. Die Lehrmeinung auf diesem Gebiet war gewesen, dass der so genannte C-Terminus der Peptidkette und die Phosphatgruppe eines RNA-Bausteins miteinander reagieren. Eine detaillierte strukturelle Charakterisierung am Institut für Organische Chemie ergab jedoch, dass im vorliegenden Fall der entgegengesetzte, sogenannte ' N-Terminus' der Peptidkette mit dem Phosphat verknüpft ist. Dadurch erklärt sich, warum längere Peptidyl-RNAs entstehen konnten. Bei der nun gefundenen Struktur der Peptidyl-RNAs können sowohl die Peptidkette als auch die RNA-Kette ohne Zutun der Wissenschaftler weiter wachsen. Aus den Peptidyl-RNAs wurden bei Zugabe von Essigsäure dann auch Peptide freigesetzt.

Doch nicht nur Peptidyl-RNAs entstehen in dem wässrigen Kondensations-Puffer. Durch die Zugabe von Hilfsstoffen konnten die Forschung auch Verbindungen detektieren, die im Metabolismus der Zelle eine wichtige Rolle spielen. Zu diesen gehört Adenosintriphosphat (ATP), das als Energiewährung der Zelle gilt, sowie die Cofaktoren NAD und FAD, die bei der Biosynthese vieler Zellbestandteile sowie der Energiebereitstellung in der Zelle vorkommen.

Puzzle-Teile passen besser zusammen

Damit ist nun klar, dass unter den gleichen Reaktionsbedingungen nicht nur einfaches genetisches Material, sondern auch Vorformen von Proteinen und von Schlüsselmolekülen eines primitiven Metabolismus entstehen können. Es braucht also gar keinen großen evolutionären Schritt, um von einer 'RNA-Welt' zu einer 'RNA-Protein-Welt' zu kommen. Letztere kann offensichtlich ähnlich spontan entstehen wie die RNA-Ketten selbst. Dass dies unter Bedingungen passiert, die auch zum spontanen Kopieren von genetischer Information führen, macht diese Beobachtungen umso faszinierender. "Viele Puzzle-Teile passen für uns nun besser zusammen" sagt Professor Richert. Sein Team, zu dem jetzt auch Svenja Kaspari gehört, arbeitet gegenwärtig an Reaktionsbedingungen, die noch näher an denen sind, die heute in der Zelle gefunden werden.

—> Originalpublikation 1

—> Originalpublikation 2

Quelle: Universität Stuttgart




—> alle Nachrichten dieser Firma

Abonnieren:

Empfehlen: