Analytik NEWS
Das Online-Labormagazin
29.03.2024
Glossar durchsuchen

Linksammlung durchsuchen

Struktur-, Dynamik- und Stabilitätsuntersuchungen an RNA mittels NMR-Spektroskopie

Rinnenthal, Jörg - Johann Wolfgang Goethe Universität Frankfurt (2010)


Die Genexpression in prokaryotischen Organismen unterliegt einer Vielzahl von Regulationsmechanismen, deren Aufgabe darin besteht, die Zelle an sich ändernde Umweltbedingungen anzupassen, um so das Überleben des prokaryotischen Organismus zu gewährleisten. Eine Reihe von Hitzeschock- und Virulenzgenen unterliegen temperaturabhängiger Regulation, mit dem Ziel, die Zelle an die sich ändernde Umgebung anzupassen. Die Messung der Temperatur erfolgt dabei über temperatursensitive RNA-Elemente, sogenannte RNA-Thermometer, die sich üblicherweise in der 5'-untranslatierten Region der Gene befinden, die sie regulieren. Sie unterdrücken die Translationsinitiation, indem sie die Shine-Dalgarno (SD)-Sequenz bei niedrigen Temperaturen über Basenpaarung blockieren und dadurch die Bindung des Ribosoms verhindern. In Kapitel 2 der vorliegenden Arbeit wurde die thermodynamische Stabilität der temperatursensitiven Haarnadelschleife 2 des Salmonella FourU RNA-Thermometers über einen breiten Temperaturbereich analysiert. Freie Enthalpie-, Enthalpie- und Entropie-Werte für die Basenpaaröffnung der einzelnen Nukleobasen innerhalb der RNA wurden über die temperaturabhängige Messung von Iminoprotonen-Austauschraten mittels NMR-Spektroskopie bestimmt. Die Austauschraten wurden für die Wildtyp-RNA und die A8C-Mutante bestimmt und miteinander verglichen. Es zeigte sich, dass die Wildtyp-RNA durch das außergewöhnlich stabile Basenpaar G14-C25 stabilisiert wird. Dies konnte durch die Untersuchung der Entfaltung der destabilisierenden G14A-C25U-Doppelmutante verifiziert werden. Über CD-spektroskopsiche Untersuchungen konnte der globale Entfaltungsübergang der jeweiligen RNA analysiert werden. Das Mismatch-Basenpaar innerhalb des Wildtyp-RNA-Thermometers (A8-G31) erwies sich als Ursache für die geringere Kooperativität des Entfaltungsübergangs der Wildtyp-RNA im Vergleich zur A8C-Mutante. Enthalpie- und Entropie-Werte für die Basenpaaröffnung einzelner Nukleotide sind für beide RNAs linear korreliert. Die Steigungen dieser Korrelationen stimmen mit den Schmelzpunkten der RNAs überein, die über CD-Spektroskopie bestimmt wurden. Entfaltung der RNA tritt also genau dann auf, wenn alle Nukleotide gleiche thermodynamische Stabilitäten besitzen. Die Resultate sind mit einem Reißverschluss-Mechanismus für die RNA-Helix Entfaltung konsistent und erklärbar, in dem die Stapelinteraktionen der benachbarten Nukleobasen innerhalb der RNA-Helix verantwortlich für die beobachtete Kooperativität sind. Die Ergebnisse weisen auch auf die Wichtigkeit der RNA-Lösungsmittel-Interaktion für die Stabilität der RNA-Struktur hin. So konnten langreichweitige Wechselwirkungen der A8C-Mutation auf die Stabilität der G14-Nukleobase identifiziert werden, die möglicherweise über die Hydrathülle der RNA vermittelt werden. Schließlich konnte für das FourU-Motiv eine Mg2+-Bindestelle identifiziert werden, die die temperaturabhängige Stabilität des RNA-Thermometers beeinflusst. Es besteht also die Möglichkeit, dass Änderungen der intrazellulären Mg2+-Konzentration die Expression des agsA-Gens in vivo modulierend beeinflussen. In Kapitel 3 dieser Arbeit wurden die dynamischen Eigenschaften des Phosphodiesterrückgrats einer perdeuterierten cUUCGg-Tetraloop-14mer-RNA untersucht. Dazu wurden die Relaxationseigenschaften aller 31P-Kerne dieser RNA bei magnetischen Feldstärken von 300, 600 und 900 MHz untersucht. Dipolare Relaxationsbeiträge konnten unterdrückt werden, indem eine perdeuterierte RNA-Probe in einem D2O-Puffer verwendet wurde. Um die 31P-Relaxationsdaten (R1, R2) interpretieren zu können, wurde zusätzlich mittels Festkörper-NMR die Chemische Verschiebungsanisotropie (CSA) der 31P-Kerne des Phosphodiesterrückgrats bestimmt. Die Messungen wurden bei verschiedenen Salzkonzentrationen und unter unterschiedlichen Hydratationsbedingungen durchgeführt. Aus den Daten konnte ein 31P-CSA-Wert von 178.5 ppm im statischen Zustand (S2 = 1) bestimmt werden. Auf der Grundlage der durchgeführten R1- und R2-Messungen wurde eine Modelfree-Analyse durchgeführt, um Informationen über die schnellen Dynamiken des Phosphodiesterrückgrats zu erhalten. Die Resultate zeigen, dass die Dynamiken des Phosphodiesterrückgrats auf der Subnanosekundenzeitskala stärker ausgeprägt sind als die Dynamiken der Ribofuranosylreste und der Nukleobasen. Des Weiteren konnte gezeigt werden, dass die Dynamik einer individuellen Phosphatgruppe zu der jeweiligen 5'-benachbarten Nukleobase korreliert ist. In Kapitel 4 dieser Arbeit wird die Entwicklung neuer Methoden beschrieben, mit denen Torsionswinkelinformation aus der Analyse kreuzkorrelierter Relaxationsraten gewonnen werden können.

Die Funktionsfähigkeit der neuen Methode wurde an einer mittelgroßen, entsprechend markierten 36mer-RNA demonstriert. Die neue Methode vereinfacht die Zuordnung der Kerne der Adenin-Nukleobasen, da Zuordnungsmehrdeutigkeiten aufgrund überlappender Resonanzen in der 1H-Dimension aufgelöst werden können. In Kombination mit dem TROSY-relayed-HCCH-COSY-Experiment liefert das neue 3D-HNHC-Experiment das fehlende Glied für die Zuordnung der Imino-H3-Resonanzen der Uracil-Nukleobasen über das AU-Basenpaar hinweg zu den H8-Resonanzen der Adenin-Nukleobasen.


» Volltext