Unsere Seite auf

Dissertationen
Linksammlung durchsuchen

 

Untersuchung ultraschneller Strukturdynamik photoschaltbarer Moleküle mittels Femtosekunden-Infrarotspektroskopie

Neumann, Karsten - Johann Wolfgang Goethe Universität Frankfurt (2010)


Ziel dieser Arbeit war die Aufklärung lichtinduzierter Strukturänderungen verschiedener photoschaltbarer Moleküle durch zeitaufgelöste Infrarotspektroskopie. Hierzu war es notwendig, eine komplexe Messapparatur zu konzipieren, aufzubauen und zu optimieren. Das entwickelte Anreg-/Abtast-Experiment ermöglicht die Messung kleinster transienter Absorptionsänderungen (delta A<1E-5) im Spektralbereich von 1000 cm-1 bis 2500 cm-1 mit einer Zeitauflösung von etwa 0,3 ps. Es können Anregungspulse im Bereich von 258nm bis über 600nm generiert werden. Über ein computergesteuertes Wellenplättchen kann die Polarisation des Anregungslichtes während der Datenaufnahme variiert werden, was eine Auswertung hinsichtlich der molekularen Anisotropie ermöglicht. Die eingesetzten Probenzellen gestatten die Untersuchung geringster Probenmengen (V <20µL) bei Temperaturen bis zu 50°C. Nitrophenylacetat (NPA) wurde hinsichtlich seiner Photodecarboxylierungsreaktion untersucht.

Für alle drei Konstitutionsisomere konnte nachgewiesen werden, dass die Freisetzung von CO2 innerhalb von 1 ns erfolgt. Es zeigen sich signifikante Unterschiede zwischen den Reaktionsverläufen der drei Konstitutionen, wobei die erhaltenen Amplituden der Photoproduktspektren mit den bekannten Decarboxylierungsquantenausbeuten korrelieren. Die globale Analyse ergibt einen multiexponentiellen Aufbau des CO2-Signals. Im Fall von meta- und para-NPA erfolgt die Abspaltung von CO2 über einen dominanten Zerfallskanal mit einer Zeitkonstante von t~200 ps.

Quantenchemische Rechnungen legen nahe, dass dieser Hauptreaktionspfad über den Triplettzustand verläuft. Bei ortho- NPA wird dieser Zerfallskanal effektiv gequencht, was mit einer schnellen Deaktivierung des angeregten Singulettzustandes durch einen intramolekularen Protonentransfer erklärt wird. Nach diesen Messungen steht fest, dass meta-Nitrophenylacetat hervorragend als caged compound für CO2 geeignet ist. Die Primärdynamik von solubilisiertem Proteorhodopsin (PR) in D2O wurde im infraroten und sichtbaren Spektralbereich sowohl bei saurem als auch bei alkalischem pD-Wert untersucht. Dies erlaubt den direkten Vergleich der in beiden Spektralbereichen gemessenen Daten. Der primäre Protonenaktzeptor Asp97 liegt dabei entweder protoniert (pD=6,4) oder deprotoniert (pD=9,2) vor. Die transienten vis-Absorptionsspektren ergaben, wie bei PR in H2O, einen biexponentiellen Zerfall des angeregten Zustands und die gleichzeitige Bildung des PRK-Photoproduktes. Die Abweichung der bei PR in D2O ermittelten Werte von den publizierten Zeitkonstanten der H2O-Messung wird als kinetischer Isoptopeneffekt interpretiert. Dieser variiert mit dem pD-Wert, was auf Unterschiede der Wasserstoffbrückenbindungsnetzwerke in der Retinalumgebung hinweist.

Die Signaturen der transienten Infrarotspektren werden den C=C- und C=N-Moden des Retinals sowie der Amid I-Mode des Proteins zugeordnet. Es konnte ebenfalls die Bildung des PRK-Produktes nachgewiesen werden, wobei die Isomerisierungsquantenausbeute des Retinals unabhängig von der Protonierung von Asp97 ist. Die im IR bestimmten Zeitkonstanten sind dabei unabhängig vom pD-Wert und weichen von den im Sichtbaren ermittelten Werten ab. Dieser Befund wird mit dem Einfluss der molekularen Temperatur auf die transienten IR-Spektren und dem Auftreten von Kühlprozessen erklärt.

Zusätzlich zum Wildtyp-Protein wurde die PR-D97N-Mutante als Modellsystem für PR im sauren pH-Bereich ebenfalls im vis- und IR-Bereich untersucht. Die dabei erzielten Ergebnisse stehen im Einklang mit den bisherigen Ausführungen. Der geringe kinetische Isotopeneffekt weist auf ein ähnliches Wasserstoffbrückennetzwerk wie beim Wildtyp unter sauren Bedingungen hin. Als letztes wurde ein synthetisches Modellcollagen untersucht. Die Seitenkettenverbrückung der Peptidsequenz mit einem Azobenzol-basierten, künstlichen Photoschalter sollte eine lichtinduzierte Entfaltung der Tertiärstruktur ermöglichen. Der isolierte Photoschalter und die gekoppelte Sequenz wurden zunächst unter Gleichgewichtsbedingungen sowohl im UV/vis- als auch im IR -Bereich umfangreich spektroskopisch charakterisiert. Diese Messdaten lagen zum großen Teil bereits vor und wurden in dieser Arbeit einer detaillierten Auswertung unterzogen. Für den isolierten Schalter konnte im IR-Bereich eine umfassende Bandenzuordnung erstellt werden. Dabei wird im photostationären Gleichgewicht eine reversible trans-> cis-Isomerisierung festgestellt, welche keine Temperaturabhängigkeit aufweist. Darüberhinaus wurden polarisationsabhängige, transiente IR-Spektren des isolierten Azoschalters für die trans->cis- und die cis->trans-Isomerisierungsrichtung aufgenommen. Die instantan auftretenden, markanten Differenzsignale können den Amid I- und Amid II-Moden der im Schalter enthaltenen Peptidbindungen sowie den Phenylmoden zugeordnet werden. Die extrahierten kinetischen Parameter sind für beide Isomere nahezu identisch, was durch einen dominanten Beitrag molekularer Kühlprozesse erklärt werden kann. Aufgrund der geringen Isomerisierungsquantenausbeute (< 10 %) können die Differenzspektren der photostationären Gleichgewichte nicht in den Produktspektren dieser Messungen reproduziert werden. Hinsichtlich der ermittelten Anisotropieparameter ergeben sich kleine Unterschiede zwischen beiden Datensätzen. Zusammen mit theoretischen Modellierungen werden diese in Zukunft genauere Aussagen über die Strukturen der Isomere erlauben.

Die UV/vis-Absorptionsspektren des gekoppelten Systems zeigen, dass die Absorptionsbanden des Azoschalters durch die Kopplung an das Collagen nicht signifikant beeinflusst werden. Im IR-Absorptionsspektrum konnten wichtige Amid I-, Amid II- und Amid II0-Banden des Azoschalters und der Peptidsequenz sowie eine große Anzahl weiterer Banden zugeordnet werden. Temperaturabhängige Absolut- und Differenzspektren im UV/vis- und IR-Bereich zeigen eine irreversible thermische Denaturierung der Collagentripelhelix ab etwa 50°C. Das verwendete, deuterierte Lösungsmittelgemisch führt zu einem H/D-Austausch. Anhand der Amid II-Bande der in der tripelhelikalen Struktur geschützten Glycine kann die Existenz der Collagenstruktur und ihre Entfaltung nachgewiesen werden. Die Amplituden der photostationären Differenzspektren sind jedoch kleiner als beim isolierten Schalter, was auf eine verringerte Isomerisierungsquantenausbeute hinweist. Die bei Erwärmung beobachtete Vergrößerung der Differenzsignale wird mit einer effizienteren Isomerisierung nach dem Aufschmelzen der Tripelhelix erklärt. Für die trans->cis-Isomerisierungsrichtung wurden transiente IR-Spektren des Azocollagens bei unterschiedlichen Temperaturen aufgenommen. Alle instantan auftretenden Differenzsignale können auf die Schwingungsmoden des Azoschalters zurückgeführt werden. Bei einer Temperatur von 50°C lässt sich ein Einfluss der Peptidsequenz auf die transienten Spektren nicht nachweisen, was mit einer aufgeschmolzenen Tertiärstruktur im Einklang ist. Hingegen wird bei 20°C das Ausbleichen von Amid I-Schwingungsbanden der Peptidsequenz beobachtet, was eindeutig einen Energietransfer auf diese Moden zeigt. Bei 35°C sind die Bleichsignale des Collagens in diesem Bereich bereits deutlich abgeschwächt. Die transienten Spektren des isolierten Azoschalters besitzen keine derartige Temperaturabhängigkeit.


—> Volltext

Abonnieren:

Empfehlen: